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The Hidden Dimension
* Software gets faster by hardware getting faster

v Core counts go up
v Clocks go up
v IPC goes up

Introduction

* Throughput = Cores x Clocks x IPC
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The Hidden Dimension

* Software gets faster by hardware getting faster
v Core counts go up
v Clocks go up
v IPC goes up

* In 1997 () MMX started a silent revolution
X1 op/instruction = 16 ops/instruction (today)

Introduction

X Not covered natively by C/C++ type system
X 90% of performance potentially left on the table by C++

* Throughput = Cores x Clocks x IPC x Ops/instruction
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My Angle

* Motivation
I deeply care about performance; it's also my job

Hand-vectorization too expensive for many applications

Masking in AVX512 and SVE2 simplifies auto-vectorization

GCC 15 and Clang 20 enabled auto-vectorization in -02

* Questions
* Will the compiler do all the work for me?

Introduction

* Gains in simple, STL-like loops
* How much potential is there at all?

* GCC and Clang are awesome!
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Recap: Vectorization = SIMD

Basic idea akin to loop unrolling:
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Recap: Vectorization = SIMD

Basic idea akin to loop unrolling:
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* Fewer iterations
(loop overhead)
* More code
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Recap: Vectorization = SIMD

Basic idea akin to loop unrolling:

a;

a; | Q]| Q2| |Qi3

‘ b b1/ IBu2|[ [Pis

Ci| [Ci1| [Ciz2| |Cir3

* Fewer iterations
(loop overhead)
* More code

a; 18;,118,218),3

b; bbb

!

Ci {Cir1:Cir2iCi3

* More work done by each
instruction
* Code size similar to scalar

Introduction
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The Repo

Introduction

https://github.com/stefeff/auto-vectorization

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.


https://github.com/stefeff/auto-vectorization

Linear Algebra

* Well-known, regular structures
* High gains, moderate effort

* FP operations always use
vector units

e HPC & benchmark relevant

Easy Mode

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.



Linear Algebra

* Well-known, regular structures

struct alignas(64) Matrix

* High gains, moderate effort {
. float data[1l6][16];

* FP operations always use F
vector units Matrix mult(const Matrix& lhs, const Matrix& rhs) %
* HPC & benchmark relevant b tmin recult. o
for (int i = 0; 1 < 16; ++1i) { E
. . . . for (int k = @; k < 16; ++k) { >\
* 16x16 matrix multiplication float sum = @; 0
o . for (int n = 09; n < 16; ++n) { (qv
* Use specialized libs for larger sum += lhs.data[i][n] * rhs.data[n][k]; L

problem sizes! ;

result.datal[i][k] = sum;

}
}

return result;
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Linear Algebra

* Well-known, regular structures

struct alignas(64) Matrix

) 1 1 {
High gains, moderate effort Float data[16][161;
* FP operations always use i
vector units Matrix mult(const Matrix& lhs, const Matrix& rhs) %
{
* HPC & benchmark relevant Matrix result; o
for (int i = 0; 1 < 16; ++1i) { E
for (int k = @; k < 16; ++k) { >\
* 16x16 matrix multiplication o e < 165 ey ¢ a
* Use specialized libs for larger , S s he-detalling T s datatn]lid; LU
problem sizes! result.data[1][k] = sum;

}
}

return result;

* Expectation
* Close to 32 Flops/cycle HW limit
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Generated Code

COMPILER
EXPLORER

Easy Mode

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.


https://godbolt.org/z/e737edGdY

Results

Speedup vs. scalar

scalar (GCC -02) 0.57 D

e

scalar (GCC -03) 1.0 o

auto-vec (GCC -02) E
auto-vec (Clang -02) 10.2 >N

. )

auto-vec (static) 10.2 m

0.0 20 4.0 6.0 8.0 10.0 12.0

Flags for auto-vectorization:
-DNDEBUG -march=native -03 -march=znver4

Flags for scalar:
-DNDEBUG -march=native -03 -march=znver4 \
-fno-tree-vectorize
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Results

* GCC and Clang output near optimal

* GCC may fail to perform pre-load
optimization Speedup vs. scalar

scalar (GCC -02) 0.57 D
* Clang -02 better than GCC -02 =)
scalar (GCC -03) 1.0 (@)
auto-vec (GCC -02) E
auto-vec (Clang -02) 10.2 >N
auto-vec (static) 10.2 %
LL

0.0 20 4.0 6.0 8.0 10.0 12.0

Flags for auto-vectorization:
-DNDEBUG -march=native -03 -march=znver4

Flags for scalar:
-DNDEBUG -march=native -03 -march=znver4 \
-fno-tree-vectorize
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Results

* GCC and Clang output near optimal

* GCC may fail to perform pre-load
optimization Speedup vs. scalar

scalar (6CC -02) [l 0.57 D
* Clang -02 better than GCC -02 =)
scalar (GCC -03) 1.0 (@)
auto-vec (GCC -02) E
auto-vec (Clang -02) 10.2 >
auto-vec (static) 10.2 %
LL

0.0 20 4.0 6.0 8.0 10.0 12.0

. Ratini:
Flags for auto-vectorization:

. ... -DNDEBUG -march=native -03 -march=znver4
* Under optimal conditions:

Flags for scalar:
- -DNDEBUG -march=native -03 -march=znver4 \
-fno-tree-vectorize

optimal
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Unpack and Transform

* Extract data from odd-sized struct
* Still simple 1D operation

* Data not nicely aligned to SIMD
chunk

* Tail handling required

Moderate
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Unpack and Transform

* Extract data from odd-sized struct
* Still simple 1D operation

* Data not nicely aligned to SIMD
chunk

* Tail handling required

* RGB-to-grayscale conversion

* Temporary expansion to FP32
changes vector capacity

struct RGB

}s

uint8 t red;
uint8 t green;

uint8 t blue;

void rgb2gray(uint8 t* gray,

{

const RGB* rgb,
size t n)

for (size t i =0; 1 < n; ++1i) {

auto& pixel = rgb[i];
float gr = 0.299f * pixel.red

gray[i]

+ 0.587f * pixel.green
+ 0.114f * pixel.blue;
static_cast<uint8 t>(gr + 0.5f);

Moderate
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Unpack and Transform

e Extract data from odd-sized struct

struct RGB
° . . . {
Still simple 1D operation Lints ¢ red;
* Data not nicely aligned to SIMD chunk uint8_t green;
uint8 t blue;
* Tail handling required b )
void rgb2gray(uint8 t* gray, E
. const RGB* rgb, B
* RGB-to-grayscale conversion size_t n) 2
: {
* Temporary expansion to FP32 changes for (size_t i = @; i < n; ++i) { %

auto& pixel = rgb[i];

float gr = 0.299f * pixel.red
+ 0.587f * pixel.green
+ 0.114f * pixel.blue;

i EXpeCtation gray[i] = static_cast<uint8_ t>(gr + 0.5f);
* Optimal: 6 cycles / iteration (16 pixels)

vector capacity

* Compiler will issue intermediate
permutation instructions
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What the Compiler Should Produce

ofi2 3568 9ofic K Q 16 bytes unused . ]ll/ﬁzlzing to load only 16 x 3
\ * Tail iteration may require
E oo "shorter" mask

-

* "permute" to pick every 3
put into every 4th

oo * Masking to fill leading
E bytes with 0
convert uint32 - float32

calculate gray value
convert float32 = uint32

0 !l 9 ﬁ F

Moderate

01234567 8910M1M12131415
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Generated Code

COMPILER
EXPLORER

Moderate

https://godbolt.org/z/c5YeaG96s
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https://godbolt.org/z/c5YeaG96s

Results

Speedup vs. scalar
scalar (-02)
scalar (-03)

auto-vec (Clang)

auto-vec (GCC)

hand-vectorized 12.0

00 20 40 60 80 100 120 14.0 16.0

Moderate
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Results

* Only minor differences between
GCC and Clang, -02 and -03

hand-vectorized 12.0

00 20 40 60 80 100 120 14.0 16.0

* Loads 3 chunks instead of just 1 Speedup vs. scalar
(input vector larger than scalar (-02) 7
processing capacity) scalar (-03) ©
* No masked tail handling atoteC(f:Ci), - S
=
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Results

* Only minor differences between
GCC and Clang, -02 and -03

* Loads 3 chunks instead of just 1
(input vector larger than
processing capacity)

Speedup vs. scalar

scalar (-02)

scalar (-03)

auto-vec (Clang) 6.3

* No masked tail handling auto-vec (GCC)

hand-vectorized 12.0

00 20 40 60 80 100 120 14.0 16.0

6.5

Moderate

* Rating:
70% of HW limit
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2D Operation std: :find first of

* Innermost of nested loops
* Usually the most costly
* May be too short for vectorization

Challenging
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2D Operation std: :find first of

* Innermost of nested loops

* Usually the most costly
* May be too short for vectorization

* Operations on strings

02.11.2025

 Often, much faster solutions exist
* LibC should cover more of those

Copyright © Efficientware GmbH, All rights reserved.

auto findFirstOf(

{

const std::string& s,
const std::string& to _find)

auto firstl = s.begin();

auto lastl = s.end();

auto first2 = to_find.begin();
auto last2 = to find.end();

// logic from glibc std _algo.h's implementation
// of std::find first of()
for (; firstl != lastl; ++firstl)
for (auto it = first2; it != last2; ++it)
if (*firstl == *iter)
return firstl;

return lastl;



2D Operation std: :find first of

* Innermost of nested loops

* Usually the most costly
* May be too short for vectorization

auto findFirstOf(
const std::string& s,
const std::string& to _find)

auto firstl = s.begin();
auto lastl = s.end();
auto first2 = to_find.begin();

* Operations on strings auto last2 = to_find.end();
¢ Often, much faster SOlUtiOHS exist // logic from glibc std algo.h's implementation
. // of std::find_first_of()
* LibC should cover more of those for (; firstl I= lastl; ++firstl)

for (auto it = first2; it != last2; ++it)
if (*firstl == *iter)
return firstl;

* Expectation
* Approach HW limit for long to_find

* HW limit is 64 comparisons/cycle

return lastl;
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Generated Code

—* COMPILER
Q EXPLORE

https://godbolt.org/z/344En8nzT 4

Challenging



https://godbolt.org/z/344En8nzT

Results

Speedup vs. scalar (to_find.len=5)

scalar (GCC) |1.0
scalar (Clang) | 1.6

auto-vec (GGC) |0.9

vectorize inner (GCC) I 5.8

vectorize outer (GCC) 65

0 20 40 60 80 100 120 140

Speedup vs. scalar (to_find.len=160)

scalar (GCC) [1.0

Challenging

scalar (Clang) [{1.0
auto-vec (GGC) 3.8
vectorize inner (GCC) 24
vectorize outer (GCC) 51

0 10 20 30 40 50 60 70 80
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Results
Speedup vs. scalar (to_find.len=5)

* Clang will often not vectorize scatar (6c0) |10

scalar (Clang) | 1.6

* Regression for short,
modest gains for large inputs

auto-vec (GGC) |0.9

vectorize inner (GCC) I 5.8

* Effective inner loop vectorization = vecorizeoutertaco 65

requires masking e |

0 20 40 60 80 100 120 140

* Vectorizing outer loop much more

1C] Speed . scalar (to_find.len=160)
EffICICI’lt, but also uses masks peedup vs. scalar (to_find.len

Challenging

scalar (GCC) |1.0
scalar (Clang) [{1.0
auto-vec (GGC) 3.8
vectorize inner (GCC) 24
vectorize outer (GCC) 51

0 10 20 30 40 50 60 70 80
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Results
Speedup vs. scalar (to_find.len=5)

* Clang will often not vectorize scatar (60) |10

scalar (Clang) | 1.6

* Regression for short,
modest gains for large inputs

auto-vec (GGC) |0.9

vectorize inner (GCC) I 5.8

* Effective inner loop vectorization vectorize outer (6CC) 65

requires masking e I -

0 20 40 60 80 100 120 140

* Vectorizing outer loop much more
effiCient, but also uses masks Speedup vs. scalar (to_find.len=160)

scalar (GCC) [1.0

Challenging

scalar (Clang) [{1.0

¢ Ratin: auto-vec (GGC) M 3.8
I YA S Of HW limit vectorize inner (GCC) 24
51

vectorize outer (GCC)

. Comiared to LibC-like solution: win [ -

0 10 20 30 40 50 60 70 80
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Compacting Vectors std: : remove_copy if

* Frequent in vectorized code
* Filter, split or reformat data

* Output shall be compact to process it
further with full vector efficiency

* More efficient than gather / scatter

Hard
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Compacting Vectors std: : remove_copy if

* Frequent in vectorized code
* Filter, split or reformat data
float* sanitize(float*  restrict  out,

* Output shall be compact to process it const float*  restrict  in,
further with full vector efficiency size t count)

* More efficient than gather / scatter { return std::remove copy if(
in,
. in + count,
* Breaks vector lane mapping out,

* More difficult than masking [1(auto v) {

return v <= 0.f;

});
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Compacting Vectors std: : remove_copy if

* Frequent in vectorized code

* Filter, split or reformat data
float* sanitize(float*  restrict  out,

* Output shall be compact to process it const float*  restrict  in,
further with full vector efficiency { size_t count)

* More efficient than gather / scatter return std::remove_ copy if(
in,
in + count,

° 1 out,
Breaks vector lane mapping o ¢
* More difficult than masking return v <= 0.f;

});

* Expectation
* No auto-vectorization
* Unaligned store limit: ~3 cycles / 64B
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lllustration

in | 1.9 |[-511/0.0]2.8]14.4|-73|0.6 | 3.4

mask

Hard

v
out [1.9]2.8]4.4]0.6 3.4 [NONNONNON

out = mm256 _maskz_compress _ps(mask, in)
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Generated Code

€

https://godbolt.org/z/x]53fG3nP

COMPILER
EXPLORER



https://godbolt.org/z/xj53fG3nP

Results

Speedup vs. scalar

scalar (GCC -02) 1.0

scalar (GCC -03) 1.0

e

scalar (Clang -02) 1.4 .

@®

auto-vec (Clang -03) 1.5 T
hand-vectorized 16

0] 2 4 6 8 10 12 14 16 18
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Results

* Same performance -02 & -03

* Clang faster due to unrolling Speed |
peeaup vs. scCalar

scalar (GCC -02) 1.0

* No auto-vectorization eotar 60c-031 1o
scalar (Clang -02) 1.4 -E
auto-vec (Clang -03) 1.5 CIG
hand-vectorized 16

0] 2 4 6 8 10 12 14 16 18
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Results

* Same performance -02 & -03
* Clang faster due to unrolling

Speedup vs. scalar

scalar (GCC -02) 1.0

* No auto-vectorization scatar (6ec -03) M0
scalar (Clang -02) 1.4 -("%
auto-vec (Clang -03) 1.5 I
hand-vectorized 16

0] 2 4 6 8 10 12 14 16 18

. Ratini:
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Throughput Relative to GCC -O2

Could it be worth going from GCC -02 to -03 or Clang?

-02 -03
GCC 15.2.0 Clang 21.1.3 GCC 15.2.90 Clang 21.1.3
scalar matmul 100%
rgb2gray 100%
find /5 100%
find /160 100%
compact 100%
matmul auto-vec 100%
auto-vec static 100%
hand-vec 100%
rgb2gray auto-vec 100%
hand-vec 100%
find auto-vec /5 100%
auto-vec /160 100%
hand-vec inner /5 100%
hand-vec inner /160 100%
hand-vec outer /5 100%
hand-vec outer /160 100%
LibC-style /5 100%
compact auto-vec 100%
hand-vec 100%

Summary

02.11.2025
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Conclusion

* Clang has edge over GCC on scalar code and -02
* Simple, linear loops get meaningful speedups
* Linear algebra saw biggest performance increase (small matrices)

Summary
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Conclusion

* Clang has edge over GCC on scalar code and -02
* Simple, linear loops get meaningful speedups
* Linear algebra saw biggest performance increase (small matrices)

* GCC -03 may still be required for auto-vectorization
* GCC somewhat better at AVX512 code (auto- and hand-vectorized)

Summary
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Conclusion

* Clang has edge over GCC on scalar code and -02
* Simple, linear loops get meaningful speedups
* Linear algebra saw biggest performance increase (small matrices)

* GCC -03 may still be required for auto-vectorization
* GCC somewhat better at AVX512 code (auto- and hand-vectorized)

Summary

* Meaningful next step: generating masked loads and stores
* Masked operations in general
* Inner / outer loop trade-offs
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