l ” Speed for Free
Current state of auto-vectorization in GCC and Clang

Stefan Fuhrmann

The Hidden Dimension
* Software gets faster by hardware getting faster

v Core counts go up
v Clocks go up
v IPC goes up

Introduction

* Throughput = Cores x Clocks x IPC

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

The Hidden Dimension

* Software gets faster by hardware getting faster
v Core counts go up
v Clocks go up
v IPC goes up

* In 1997 () MMX started a silent revolution
X1 op/instruction = 16 ops/instruction (today)

Introduction

X Not covered natively by C/C++ type system
X 90% of performance potentially left on the table by C++

* Throughput = Cores x Clocks x IPC

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

The Hidden Dimension

* Software gets faster by hardware getting faster
v Core counts go up
v Clocks go up
v IPC goes up

* In 1997 () MMX started a silent revolution
X1 op/instruction = 16 ops/instruction (today)

Introduction

X Not covered natively by C/C++ type system
X 90% of performance potentially left on the table by C++

* Throughput = Cores x Clocks x IPC x Ops/instruction

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

My Angle

* Motivation
I deeply care about performance; it's also my job

Hand-vectorization too expensive for many applications

Masking in AVX512 and SVE2 simplifies auto-vectorization

GCC 15 and Clang 20 enabled auto-vectorization in -02

* Questions
* Will the compiler do all the work for me?

Introduction

* Gains in simple, STL-like loops
* How much potential is there at all?

* GCC and Clang are awesome!

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Recap: Vectorization = SIMD

Basic idea akin to loop unrolling:

a;
C
Ie
b 5
-
E®]
o
-
"
i=
C;

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Recap: Vectorization = SIMD

Basic idea akin to loop unrolling:

ai ai ai+1 ai+2 ai+3 -
O

)

bi bi bi+1 bi+2 bi+3 (&

-

L®]

(@

-

e

L=

C; Ci| [Ci1| [Ciz2| |Cir3

* Fewer iterations
(loop overhead)
* More code

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Recap: Vectorization = SIMD

Basic idea akin to loop unrolling:

a;

a; | Q]| Q2| |Qi3

‘ b b1/ IBu2|[[Pis

Ci| [Ci1| [Ciz2| |Cir3

* Fewer iterations
(loop overhead)
* More code

a; 18;,118,218),3

b; bbb

!

Ci {Cir1:Cir2iCi3

* More work done by each
instruction
* Code size similar to scalar

Introduction

02.11.2025

Copyright © Efficientware GmbH, All rights reserved.

The Repo

Introduction

https://github.com/stefeff/auto-vectorization

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

https://github.com/stefeff/auto-vectorization

Linear Algebra

* Well-known, regular structures
* High gains, moderate effort

* FP operations always use
vector units

e HPC & benchmark relevant

Easy Mode

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Linear Algebra

* Well-known, regular structures

struct alignas(64) Matrix

* High gains, moderate effort {
. float data[1l6][16];

* FP operations always use F
vector units Matrix mult(const Matrix& lhs, const Matrix& rhs) %
* HPC & benchmark relevant b tmin recult. o
for (int i = 0; 1 < 16; ++1i) { E
. . . . for (int k = @; k < 16; ++k) { >\
* 16x16 matrix multiplication float sum = @; 0
o . for (int n = 09; n < 16; ++n) { (qv
* Use specialized libs for larger sum += lhs.data[i][n] * rhs.data[n][k]; L

problem sizes! ;

result.datal[i][k] = sum;

}
}

return result;

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Linear Algebra

* Well-known, regular structures

struct alignas(64) Matrix

) 1 1 {
High gains, moderate effort Float data[16][161;
* FP operations always use i
vector units Matrix mult(const Matrix& lhs, const Matrix& rhs) %
{
* HPC & benchmark relevant Matrix result; o
for (int i = 0; 1 < 16; ++1i) { E
for (int k = @; k < 16; ++k) { >\
* 16x16 matrix multiplication o e < 165 ey ¢ a
* Use specialized libs for larger , S s he-detalling T s datatn]lid; LU
problem sizes! result.data[1][k] = sum;

}
}

return result;

* Expectation
* Close to 32 Flops/cycle HW limit

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Generated Code

COMPILER
EXPLORER

Easy Mode

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

https://godbolt.org/z/e737edGdY

Results

Speedup vs. scalar

scalar (GCC -02) 0.57 D

e

scalar (GCC -03) 1.0 o

auto-vec (GCC -02) E
auto-vec (Clang -02) 10.2 >N

.)

auto-vec (static) 10.2 m

0.0 20 4.0 6.0 8.0 10.0 12.0

Flags for auto-vectorization:
-DNDEBUG -march=native -03 -march=znver4

Flags for scalar:
-DNDEBUG -march=native -03 -march=znver4 \
-fno-tree-vectorize

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Results

* GCC and Clang output near optimal

* GCC may fail to perform pre-load
optimization Speedup vs. scalar

scalar (GCC -02) 0.57 D
* Clang -02 better than GCC -02 =)
scalar (GCC -03) 1.0 (@)
auto-vec (GCC -02) E
auto-vec (Clang -02) 10.2 >N
auto-vec (static) 10.2 %
LL

0.0 20 4.0 6.0 8.0 10.0 12.0

Flags for auto-vectorization:
-DNDEBUG -march=native -03 -march=znver4

Flags for scalar:
-DNDEBUG -march=native -03 -march=znver4 \
-fno-tree-vectorize

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Results

* GCC and Clang output near optimal

* GCC may fail to perform pre-load
optimization Speedup vs. scalar

scalar (6CC -02) [l 0.57 D
* Clang -02 better than GCC -02 =)
scalar (GCC -03) 1.0 (@)
auto-vec (GCC -02) E
auto-vec (Clang -02) 10.2 >
auto-vec (static) 10.2 %
LL

0.0 20 4.0 6.0 8.0 10.0 12.0

. Ratini:
Flags for auto-vectorization:

. ... -DNDEBUG -march=native -03 -march=znver4
* Under optimal conditions:

Flags for scalar:
- -DNDEBUG -march=native -03 -march=znver4 \
-fno-tree-vectorize

optimal

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Unpack and Transform

* Extract data from odd-sized struct
* Still simple 1D operation

* Data not nicely aligned to SIMD
chunk

* Tail handling required

Moderate

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Unpack and Transform

* Extract data from odd-sized struct
* Still simple 1D operation

* Data not nicely aligned to SIMD
chunk

* Tail handling required

* RGB-to-grayscale conversion

* Temporary expansion to FP32
changes vector capacity

struct RGB

}s

uint8 t red;
uint8 t green;

uint8 t blue;

void rgb2gray(uint8 t* gray,

{

const RGB* rgb,
size t n)

for (size t i =0; 1 < n; ++1i) {

auto& pixel = rgb[i];
float gr = 0.299f * pixel.red

gray[i]

+ 0.587f * pixel.green
+ 0.114f * pixel.blue;
static_cast<uint8 t>(gr + 0.5f);

Moderate

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Unpack and Transform

e Extract data from odd-sized struct

struct RGB
° . . . {
Still simple 1D operation Lints ¢ red;
* Data not nicely aligned to SIMD chunk uint8_t green;
uint8 t blue;
* Tail handling required b)
void rgb2gray(uint8 t* gray, E
. const RGB* rgb, B
* RGB-to-grayscale conversion size_t n) 2
: {
* Temporary expansion to FP32 changes for (size_t i = @; i < n; ++i) { %

auto& pixel = rgb[i];

float gr = 0.299f * pixel.red
+ 0.587f * pixel.green
+ 0.114f * pixel.blue;

i EXpeCtation gray[i] = static_cast<uint8_ t>(gr + 0.5f);
* Optimal: 6 cycles / iteration (16 pixels)

vector capacity

* Compiler will issue intermediate
permutation instructions

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

What the Compiler Should Produce

ofi2 3568 9ofic K Q 16 bytes unused .]ll/ﬁzlzing to load only 16 x 3
\ * Tail iteration may require
E oo "shorter" mask

-

* "permute" to pick every 3
put into every 4th

oo * Masking to fill leading
E bytes with 0
convert uint32 - float32

calculate gray value
convert float32 = uint32

0 !l 9 ﬁ F

Moderate

01234567 8910M1M12131415

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Generated Code

COMPILER
EXPLORER

Moderate

https://godbolt.org/z/c5YeaG96s

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

https://godbolt.org/z/c5YeaG96s

Results

Speedup vs. scalar
scalar (-02)
scalar (-03)

auto-vec (Clang)

auto-vec (GCC)

hand-vectorized 12.0

00 20 40 60 80 100 120 14.0 16.0

Moderate

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Results

* Only minor differences between
GCC and Clang, -02 and -03

hand-vectorized 12.0

00 20 40 60 80 100 120 14.0 16.0

* Loads 3 chunks instead of just 1 Speedup vs. scalar
(input vector larger than scalar (-02) 7
processing capacity) scalar (-03) ©
* No masked tail handling atoteC(f:Ci), - S
=

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Results

* Only minor differences between
GCC and Clang, -02 and -03

* Loads 3 chunks instead of just 1
(input vector larger than
processing capacity)

Speedup vs. scalar

scalar (-02)

scalar (-03)

auto-vec (Clang) 6.3

* No masked tail handling auto-vec (GCC)

hand-vectorized 12.0

00 20 40 60 80 100 120 14.0 16.0

6.5

Moderate

* Rating:
70% of HW limit

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

2D Operation std: :find first of

* Innermost of nested loops
* Usually the most costly
* May be too short for vectorization

Challenging

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

2D Operation std: :find first of

* Innermost of nested loops

* Usually the most costly
* May be too short for vectorization

* Operations on strings

02.11.2025

 Often, much faster solutions exist
* LibC should cover more of those

Copyright © Efficientware GmbH, All rights reserved.

auto findFirstOf(

{

const std::string& s,
const std::string& to _find)

auto firstl = s.begin();

auto lastl = s.end();

auto first2 = to_find.begin();
auto last2 = to find.end();

// logic from glibc std _algo.h's implementation
// of std::find first of()
for (; firstl != lastl; ++firstl)
for (auto it = first2; it != last2; ++it)
if (*firstl == *iter)
return firstl;

return lastl;

2D Operation std: :find first of

* Innermost of nested loops

* Usually the most costly
* May be too short for vectorization

auto findFirstOf(
const std::string& s,
const std::string& to _find)

auto firstl = s.begin();
auto lastl = s.end();
auto first2 = to_find.begin();

* Operations on strings auto last2 = to_find.end();
¢ Often, much faster SOlUtiOHS exist // logic from glibc std algo.h's implementation
. // of std::find_first_of()
* LibC should cover more of those for (; firstl I= lastl; ++firstl)

for (auto it = first2; it != last2; ++it)
if (*firstl == *iter)
return firstl;

* Expectation
* Approach HW limit for long to_find

* HW limit is 64 comparisons/cycle

return lastl;

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Generated Code

—* COMPILER
Q EXPLORE

https://godbolt.org/z/344En8nzT 4

Challenging

https://godbolt.org/z/344En8nzT

Results

Speedup vs. scalar (to_find.len=5)

scalar (GCC) |1.0
scalar (Clang) | 1.6

auto-vec (GGC) |0.9

vectorize inner (GCC) I 5.8

vectorize outer (GCC) 65

0 20 40 60 80 100 120 140

Speedup vs. scalar (to_find.len=160)

scalar (GCC) [1.0

Challenging

scalar (Clang) [{1.0
auto-vec (GGC) 3.8
vectorize inner (GCC) 24
vectorize outer (GCC) 51

0 10 20 30 40 50 60 70 80

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Results
Speedup vs. scalar (to_find.len=5)

* Clang will often not vectorize scatar (6c0) |10

scalar (Clang) | 1.6

* Regression for short,
modest gains for large inputs

auto-vec (GGC) |0.9

vectorize inner (GCC) I 5.8

* Effective inner loop vectorization = vecorizeoutertaco 65

requires masking e |

0 20 40 60 80 100 120 140

* Vectorizing outer loop much more

1C] Speed . scalar (to_find.len=160)
EffICICI’lt, but also uses masks peedup vs. scalar (to_find.len

Challenging

scalar (GCC) |1.0
scalar (Clang) [{1.0
auto-vec (GGC) 3.8
vectorize inner (GCC) 24
vectorize outer (GCC) 51

0 10 20 30 40 50 60 70 80

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Results
Speedup vs. scalar (to_find.len=5)

* Clang will often not vectorize scatar (60) |10

scalar (Clang) | 1.6

* Regression for short,
modest gains for large inputs

auto-vec (GGC) |0.9

vectorize inner (GCC) I 5.8

* Effective inner loop vectorization vectorize outer (6CC) 65

requires masking e I -

0 20 40 60 80 100 120 140

* Vectorizing outer loop much more
effiCient, but also uses masks Speedup vs. scalar (to_find.len=160)

scalar (GCC) [1.0

Challenging

scalar (Clang) [{1.0

¢ Ratin: auto-vec (GGC) M 3.8
I YA S Of HW limit vectorize inner (GCC) 24
51

vectorize outer (GCC)

. Comiared to LibC-like solution: win [-

0 10 20 30 40 50 60 70 80

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Compacting Vectors std: : remove_copy if

* Frequent in vectorized code
* Filter, split or reformat data

* Output shall be compact to process it
further with full vector efficiency

* More efficient than gather / scatter

Hard

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Compacting Vectors std: : remove_copy if

* Frequent in vectorized code
* Filter, split or reformat data
float* sanitize(float* restrict out,

* Output shall be compact to process it const float* restrict in,
further with full vector efficiency size t count)

* More efficient than gather / scatter { return std::remove copy if(
in,
. in + count,
* Breaks vector lane mapping out,

* More difficult than masking [1(auto v) {

return v <= 0.f;

});

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Compacting Vectors std: : remove_copy if

* Frequent in vectorized code

* Filter, split or reformat data
float* sanitize(float* restrict out,

* Output shall be compact to process it const float* restrict in,
further with full vector efficiency { size_t count)

* More efficient than gather / scatter return std::remove_ copy if(
in,
in + count,

° 1 out,
Breaks vector lane mapping o ¢
* More difficult than masking return v <= 0.f;

});

* Expectation
* No auto-vectorization
* Unaligned store limit: ~3 cycles / 64B

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

lllustration

in | 1.9 |[-511/0.0]2.8]14.4|-73|0.6 | 3.4

mask

Hard

v
out [1.9]2.8]4.4]0.6 3.4 [NONNONNON

out = mm256 _maskz_compress _ps(mask, in)

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Generated Code

€

https://godbolt.org/z/x]53fG3nP

COMPILER
EXPLORER

https://godbolt.org/z/xj53fG3nP

Results

Speedup vs. scalar

scalar (GCC -02) 1.0

scalar (GCC -03) 1.0

e

scalar (Clang -02) 1.4 .

@®

auto-vec (Clang -03) 1.5 T
hand-vectorized 16

0] 2 4 6 8 10 12 14 16 18

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Results

* Same performance -02 & -03

* Clang faster due to unrolling Speed |
peeaup vs. scCalar

scalar (GCC -02) 1.0

* No auto-vectorization eotar 60c-031 1o
scalar (Clang -02) 1.4 -E
auto-vec (Clang -03) 1.5 CIG
hand-vectorized 16

0] 2 4 6 8 10 12 14 16 18

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Results

* Same performance -02 & -03
* Clang faster due to unrolling

Speedup vs. scalar

scalar (GCC -02) 1.0

* No auto-vectorization scatar (6ec -03) M0
scalar (Clang -02) 1.4 -("%
auto-vec (Clang -03) 1.5 I
hand-vectorized 16

0] 2 4 6 8 10 12 14 16 18

. Ratini:

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Throughput Relative to GCC -O2

Could it be worth going from GCC -02 to -03 or Clang?

-02 -03
GCC 15.2.0 Clang 21.1.3 GCC 15.2.90 Clang 21.1.3
scalar matmul 100%
rgb2gray 100%
find /5 100%
find /160 100%
compact 100%
matmul auto-vec 100%
auto-vec static 100%
hand-vec 100%
rgb2gray auto-vec 100%
hand-vec 100%
find auto-vec /5 100%
auto-vec /160 100%
hand-vec inner /5 100%
hand-vec inner /160 100%
hand-vec outer /5 100%
hand-vec outer /160 100%
LibC-style /5 100%
compact auto-vec 100%
hand-vec 100%

Summary

02.11.2025

Copyright © Efficientware GmbH, All rights reserved.

Conclusion

* Clang has edge over GCC on scalar code and -02
* Simple, linear loops get meaningful speedups
* Linear algebra saw biggest performance increase (small matrices)

Summary

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Conclusion

* Clang has edge over GCC on scalar code and -02
* Simple, linear loops get meaningful speedups
* Linear algebra saw biggest performance increase (small matrices)

* GCC -03 may still be required for auto-vectorization
* GCC somewhat better at AVX512 code (auto- and hand-vectorized)

Summary

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

Conclusion

* Clang has edge over GCC on scalar code and -02
* Simple, linear loops get meaningful speedups
* Linear algebra saw biggest performance increase (small matrices)

* GCC -03 may still be required for auto-vectorization
* GCC somewhat better at AVX512 code (auto- and hand-vectorized)

Summary

* Meaningful next step: generating masked loads and stores
* Masked operations in general
* Inner / outer loop trade-offs

02.11.2025 Copyright © Efficientware GmbH, All rights reserved.

	Slide1
	Slide12
	Slide 3
	Slide 4
	Slide 5
	Slide13
	Slide 7
	Slide 8
	Slide 10
	Slide15
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide17
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide29
	Slide19
	Slide18
	Slide 24
	Slide 25
	Slide27
	Slide 27
	Slide 28
	Slide22
	Slide21
	Slide 31
	Slide 32
	Slide26
	Slide 34
	Slide 35
	Slide 36
	Slide32
	Slide24
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

