
Software and Safety

AnthonyWilliams
Woven by Toyota

https://www.woven.toyota

November 2025

https://www.woven.toyota


Definitions

Safety Critical Software
The consequence for failure is injury or loss of life.



Definitions

Safety Critical Software
The consequence for failure is injury or loss of life.



Definitions

Software with Safety Consequences
Failure can cause quality-of-life problems for users
— e.g. loss of money, loss of work, loss of trust,
exposure of personal details, identity theft.



Software for Dangerous Devices

Automotive control software
— steering, brakes, engine
control
Aircraft cockpit software
Factory machinery control
software
Nuclear power plant control
software



Software for Dangerous Devices
Automotive control software
— steering, brakes, engine
control

Aircraft cockpit software
Factory machinery control
software
Nuclear power plant control
software



Software for Dangerous Devices
Automotive control software
— steering, brakes, engine
control
Aircraft cockpit software

Factory machinery control
software
Nuclear power plant control
software



Software for Dangerous Devices
Automotive control software
— steering, brakes, engine
control
Aircraft cockpit software
Factory machinery control
software

Nuclear power plant control
software



Software for Dangerous Devices
Automotive control software
— steering, brakes, engine
control
Aircraft cockpit software
Factory machinery control
software
Nuclear power plant control
software



Software in Medical Devices

Pacemakers
Defibrilators
Artificial lungs
CT Scanners



Software in Medical Devices

Pacemakers

Defibrilators
Artificial lungs
CT Scanners



Software in Medical Devices

Pacemakers
Defibrilators

Artificial lungs
CT Scanners



Software in Medical Devices

Pacemakers
Defibrilators
Artificial lungs

CT Scanners



Software in Medical Devices

Pacemakers
Defibrilators
Artificial lungs
CT Scanners



Software Designed to Increase Safety

Driving assistance software
Automatic cut-off on cookers
Fire alarm and sprinkler
systems



Software Designed to Increase Safety

Driving assistance software

Automatic cut-off on cookers
Fire alarm and sprinkler
systems



Software Designed to Increase Safety

Driving assistance software
Automatic cut-off on cookers

Fire alarm and sprinkler
systems



Software Designed to Increase Safety

Driving assistance software
Automatic cut-off on cookers
Fire alarm and sprinkler
systems



Software for Management Tasks

Traffic light control software
Air trafficmanagement
software
Railway management
software



Software for Management Tasks

Traffic light control software

Air trafficmanagement
software
Railway management
software



Software for Management Tasks

Traffic light control software
Air trafficmanagement
software

Railway management
software



Software for Management Tasks

Traffic light control software
Air trafficmanagement
software
Railway management
software



Personal Data Management

Payment software
Banking software
Phone software
Social Media



Personal Data Management

Payment software

Banking software
Phone software
Social Media



Personal Data Management

Payment software
Banking software

Phone software
Social Media



Personal Data Management

Payment software
Banking software
Phone software

Social Media



Personal Data Management

Payment software
Banking software
Phone software
Social Media



Incidental Software

Games
Internet-connected devices
Web browsers
Spreadsheets



Incidental Software

Games

Internet-connected devices
Web browsers
Spreadsheets



Incidental Software

Games
Internet-connected devices

Web browsers
Spreadsheets



Incidental Software

Games
Internet-connected devices
Web browsers

Spreadsheets



Incidental Software

Games
Internet-connected devices
Web browsers
Spreadsheets



Software Development Standards

Safety Critical Software has Standards to conform to.

The “baseline” standard is IEC 61508: “Functional
Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems”



Software Development Standards

Safety Critical Software has Standards to conform to.

The “baseline” standard is IEC 61508: “Functional
Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems”



Software Development Standards
There are also industry-specific standards:

ISO 26262 for automotive software
DO-178C for aerospace software
IEC 62304 and related standards for medical
device software
CENELEC EN 50128 for railway software
etc.



Software Development Standards
There are also industry-specific standards:

ISO 26262 for automotive software

DO-178C for aerospace software
IEC 62304 and related standards for medical
device software
CENELEC EN 50128 for railway software
etc.



Software Development Standards
There are also industry-specific standards:

ISO 26262 for automotive software
DO-178C for aerospace software

IEC 62304 and related standards for medical
device software
CENELEC EN 50128 for railway software
etc.



Software Development Standards
There are also industry-specific standards:

ISO 26262 for automotive software
DO-178C for aerospace software
IEC 62304 and related standards for medical
device software

CENELEC EN 50128 for railway software
etc.



Software Development Standards
There are also industry-specific standards:

ISO 26262 for automotive software
DO-178C for aerospace software
IEC 62304 and related standards for medical
device software
CENELEC EN 50128 for railway software

etc.



Software Development Standards
There are also industry-specific standards:

ISO 26262 for automotive software
DO-178C for aerospace software
IEC 62304 and related standards for medical
device software
CENELEC EN 50128 for railway software
etc.



Software Development Standards

If your software is not “Safety Critical”, then these don’t
apply.

You should still consider “safety”, and the potential
impact of failure on your users.



Software Development Standards

If your software is not “Safety Critical”, then these don’t
apply.

You should still consider “safety”, and the potential
impact of failure on your users.



Problem Causes

Events they thought “would never
happen”
Events they didn’t even consider
as possibilities



Problem Causes
A big cause of problems is circum-
stances the developers didn’t expect to
happen:

Events they thought “would never
happen”
Events they didn’t even consider
as possibilities

unknown unknown unknown

known known known

Knowns Unknowns

Knowns

Knowns

Unknowns

Unknowns



Problem Causes
A big cause of problems is circum-
stances the developers didn’t expect to
happen:

Events they thought “would never
happen”

Events they didn’t even consider
as possibilities

unknown unknown unknown

known known known

Knowns Unknowns

Knowns

Knowns

Unknowns

Unknowns



Problem Causes
A big cause of problems is circum-
stances the developers didn’t expect to
happen:

Events they thought “would never
happen”
Events they didn’t even consider
as possibilities

unknown unknown unknown

known known known

Knowns Unknowns

Knowns

Knowns

Unknowns

Unknowns



Problem Causes
Another big cause ismistakes

The developer intended one thing, but
the code does something else

We commonly call these cases bugs



Problem Causes
Another big cause ismistakes

The developer intended one thing, but
the code does something else

We commonly call these cases bugs



Problem Causes
Another big cause ismistakes

The developer intended one thing, but
the code does something else

We commonly call these cases bugs



Problem Causes
Other causes can include:

Hardware failure— sensors, motors, displays,
storage, …
“Bad” user input— steering off a bridge, entering
incorrect drug dosage, …

From a safety point of view, these are design issues.
Can we design the system to handle these?



Problem Causes
Other causes can include:

Hardware failure— sensors, motors, displays,
storage, …

“Bad” user input— steering off a bridge, entering
incorrect drug dosage, …

From a safety point of view, these are design issues.
Can we design the system to handle these?



Problem Causes
Other causes can include:

Hardware failure— sensors, motors, displays,
storage, …
“Bad” user input— steering off a bridge, entering
incorrect drug dosage, …

From a safety point of view, these are design issues.
Can we design the system to handle these?



Problem Causes
Other causes can include:

Hardware failure— sensors, motors, displays,
storage, …
“Bad” user input— steering off a bridge, entering
incorrect drug dosage, …

From a safety point of view, these are design issues.

Can we design the system to handle these?



Problem Causes
Other causes can include:

Hardware failure— sensors, motors, displays,
storage, …
“Bad” user input— steering off a bridge, entering
incorrect drug dosage, …

From a safety point of view, these are design issues.
Can we design the system to handle these?



Another Definition
undefined behavior
behavior for which this document imposes no
requirements

—C++23 §3.65 [defns.undefined]

“no requirements” means the code can do anything at
all.



Another Definition
undefined behavior
behavior for which this document imposes no
requirements

—C++23 §3.65 [defns.undefined]

“no requirements” means the code can do anything at
all.



Undefined Behaviour
the implemented software unit shall be verified
…to provide evidence for …confidence in the
absence of unintended functionality

— ISO 26262

Code with UB can do anything at all. This is likely
unintended functionality, so must be avoided.

Safety-Critical codemust provide evidence.



Undefined Behaviour
the implemented software unit shall be verified
…to provide evidence for …confidence in the
absence of unintended functionality

— ISO 26262

Code with UB can do anything at all. This is likely
unintended functionality, so must be avoided.

Safety-Critical codemust provide evidence.



Undefined Behaviour
the implemented software unit shall be verified
…to provide evidence for …confidence in the
absence of unintended functionality

— ISO 26262

Code with UB can do anything at all. This is likely
unintended functionality, so must be avoided.

Safety-Critical codemust provide evidence.



Memory Safety?
There is a lot of publicity about the lack
ofMemorySafetybeingabigproblem.

Such problems are often an example of
Undefined Behaviour:

Lifetime errors
Bounds errors



Memory Safety?
There is a lot of publicity about the lack
ofMemorySafetybeingabigproblem.

Such problems are often an example of
Undefined Behaviour:

Lifetime errors
Bounds errors



Memory Safety?
There is a lot of publicity about the lack
ofMemorySafetybeingabigproblem.

Such problems are often an example of
Undefined Behaviour:

Lifetime errors

Bounds errors



Memory Safety?
There is a lot of publicity about the lack
ofMemorySafetybeingabigproblem.

Such problems are often an example of
Undefined Behaviour:

Lifetime errors
Bounds errors



Undefined Behaviour
Undefined behaviour is often a conse-
quence of an unexpected event.

If we are serious about “Safety”, we
need to work hard to ensure we elimi-
nate unexpected events.

unknown unknown unknown

known known known

Knowns Unknowns

Knowns

Knowns

Unknowns

Unknowns



Undefined Behaviour
Undefined behaviour is often a conse-
quence of an unexpected event.

If we are serious about “Safety”, we
need to work hard to ensure we elimi-
nate unexpected events.

unknown unknown unknown

known known known

Knowns Unknowns

Knowns

Knowns

Unknowns

Unknowns



Consequences

This all impacts how you develop software.

In particular, it affects how you specify that software,
and test that software.



Consequences

This all impacts how you develop software.

In particular, it affects how you specify that software,
and test that software.



Validating Input
A tester walks into a bar...

Orders 1 beer
Orders 99 beers
Orders an orange juice
Orders -1 beers
Orders four candles
Orders a DROP TABLE DRINKS



Validating Input
A tester walks into a bar...

Orders 1 beer

Orders 99 beers
Orders an orange juice
Orders -1 beers
Orders four candles
Orders a DROP TABLE DRINKS



Validating Input
A tester walks into a bar...

Orders 1 beer
Orders 99 beers

Orders an orange juice
Orders -1 beers
Orders four candles
Orders a DROP TABLE DRINKS



Validating Input
A tester walks into a bar...

Orders 1 beer
Orders 99 beers
Orders an orange juice

Orders -1 beers
Orders four candles
Orders a DROP TABLE DRINKS



Validating Input
A tester walks into a bar...

Orders 1 beer
Orders 99 beers
Orders an orange juice
Orders -1 beers

Orders four candles
Orders a DROP TABLE DRINKS



Validating Input
A tester walks into a bar...

Orders 1 beer
Orders 99 beers
Orders an orange juice
Orders -1 beers
Orders four candles

Orders a DROP TABLE DRINKS



Validating Input
A tester walks into a bar...

Orders 1 beer
Orders 99 beers
Orders an orange juice
Orders -1 beers
Orders four candles
Orders a DROP TABLE DRINKS



Validating Input

Your software needs to have an intended behaviour for
every possible input.

Including network traffic, file contents, and interactions
with external software or devices.

This is a design problem.



Validating Input

Your software needs to have an intended behaviour for
every possible input.

Including network traffic, file contents, and interactions
with external software or devices.

This is a design problem.



Validating Input

Your software needs to have an intended behaviour for
every possible input.

Including network traffic, file contents, and interactions
with external software or devices.

This is a design problem.



Validating Input
Design interactions so input is checkable.

Check input for structure before interpreting values:

Use a checksum to validate
Use a schema to check format
Validate sizes and offsets

Decide on behaviour for invalid input.



Validating Input
Design interactions so input is checkable.

Check input for structure before interpreting values:

Use a checksum to validate
Use a schema to check format
Validate sizes and offsets

Decide on behaviour for invalid input.



Validating Input
Design interactions so input is checkable.

Check input for structure before interpreting values:

Use a checksum to validate

Use a schema to check format
Validate sizes and offsets

Decide on behaviour for invalid input.



Validating Input
Design interactions so input is checkable.

Check input for structure before interpreting values:

Use a checksum to validate
Use a schema to check format

Validate sizes and offsets

Decide on behaviour for invalid input.



Validating Input
Design interactions so input is checkable.

Check input for structure before interpreting values:

Use a checksum to validate
Use a schema to check format
Validate sizes and offsets

Decide on behaviour for invalid input.



Validating Input
Design interactions so input is checkable.

Check input for structure before interpreting values:

Use a checksum to validate
Use a schema to check format
Validate sizes and offsets

Decide on behaviour for invalid input.



Validating Input
Choosing appropriate behaviour is the tricky part.

What if the input is invalid?
What if the input is valid on its own, but not in the
current system state?
What if the “input” is that something external isn’t
working as expected?

Can you design the system so these are “expected” and
handled gracefully?



Validating Input
Choosing appropriate behaviour is the tricky part.

What if the input is invalid?

What if the input is valid on its own, but not in the
current system state?
What if the “input” is that something external isn’t
working as expected?

Can you design the system so these are “expected” and
handled gracefully?



Validating Input
Choosing appropriate behaviour is the tricky part.

What if the input is invalid?
What if the input is valid on its own, but not in the
current system state?

What if the “input” is that something external isn’t
working as expected?

Can you design the system so these are “expected” and
handled gracefully?



Validating Input
Choosing appropriate behaviour is the tricky part.

What if the input is invalid?
What if the input is valid on its own, but not in the
current system state?
What if the “input” is that something external isn’t
working as expected?

Can you design the system so these are “expected” and
handled gracefully?



Validating Input
Choosing appropriate behaviour is the tricky part.

What if the input is invalid?
What if the input is valid on its own, but not in the
current system state?
What if the “input” is that something external isn’t
working as expected?

Can you design the system so these are “expected” and
handled gracefully?



Validating Input

Input validation is also a testing problem.

Malformed and invalid inputs can outnumber valid
inputs.

Usually it is impractical to test with all possible inputs.



Validating Input

Input validation is also a testing problem.

Malformed and invalid inputs can outnumber valid
inputs.

Usually it is impractical to test with all possible inputs.



Validating Input

Input validation is also a testing problem.

Malformed and invalid inputs can outnumber valid
inputs.

Usually it is impractical to test with all possible inputs.



Validating Input
White box analysis of problematic
inputs should feed tests.

Fuzz testing can help fill holes.

Test all layers of your end product: low
level libraries, middleware, application
processes, the whole “system”



Validating Input
White box analysis of problematic
inputs should feed tests.

Fuzz testing can help fill holes.

Test all layers of your end product: low
level libraries, middleware, application
processes, the whole “system”



Validating Input
White box analysis of problematic
inputs should feed tests.

Fuzz testing can help fill holes.

Test all layers of your end product: low
level libraries, middleware, application
processes, the whole “system”



Identifying Undefined Behaviour
Testing only gets us so far.

One of themost dangerous consequences of UB is
when the code does exactly what you naively expected,
in testing.

The UB is still there, and can potentially cause safety
issues in production.

Memory Safety issues often fall into this category.



Identifying Undefined Behaviour
Testing only gets us so far.

One of themost dangerous consequences of UB is
when the code does exactly what you naively expected,
in testing.

The UB is still there, and can potentially cause safety
issues in production.

Memory Safety issues often fall into this category.



Identifying Undefined Behaviour
Testing only gets us so far.

One of themost dangerous consequences of UB is
when the code does exactly what you naively expected,
in testing.

The UB is still there, and can potentially cause safety
issues in production.

Memory Safety issues often fall into this category.



Identifying Undefined Behaviour
Testing only gets us so far.

One of themost dangerous consequences of UB is
when the code does exactly what you naively expected,
in testing.

The UB is still there, and can potentially cause safety
issues in production.

Memory Safety issues often fall into this category.



Identifying Undefined Behaviour
Static Analysis can identify some UB at
build time.

Sanitizers and hardened libraries can
identify some UB at runtime.

Use sanitizers in testing and hardened
libraries in testing and production.



Identifying Undefined Behaviour
Static Analysis can identify some UB at
build time.

Sanitizers and hardened libraries can
identify some UB at runtime.

Use sanitizers in testing and hardened
libraries in testing and production.



Identifying Undefined Behaviour
Static Analysis can identify some UB at
build time.

Sanitizers and hardened libraries can
identify some UB at runtime.

Use sanitizers in testing and hardened
libraries in testing and production.



Contracts
Preconditions specify what is required
to be true when you use a function or
class.

Postconditions specify what will be true
when a function returns.



Contracts
Preconditions specify what is required
to be true when you use a function or
class.

Postconditions specify what will be true
when a function returns.



Checking Contracts: if
You can often check preconditions in code:

// precondition: ptr must not be null
void foo(bar* ptr) {

if(ptr == nullptr) { // contract check
precondition_violated();

}
do_something(*ptr);

}



Checking Contracts: macros
You can often check preconditions in code:

// precondition: ptr must not be null
void foo(bar* ptr) {

PRECONDITION(ptr != nullptr);

do_something(*ptr);
}



Checking Contracts: C++26
You can often check preconditions in code:

// precondition: ptr must not be null
void foo(bar* ptr)

pre(ptr != nullptr) { // C++26 syntax

do_something(*ptr);
}



Checking Contracts: Static Analysis
You can often check preconditions in code:

// precondition: ptr must not be null
void foo(bar* ptr) {

/*@ requires @*/ // CodeQL Annotation
assert(ptr != nullptr);

do_something(*ptr);
}



Checking Contracts: Performance
A checked contract requires evaluating the condition,
and branching to the handler on failure.

void foo(bar* ptr) {
PRECONDITION(ptr != nullptr);
do_something(*ptr);

}

"foo(bar*)":
test rdi, rdi
je .L3
jmp "do_something(bar&)"

"foo(bar*) [clone .cold]":
.L3:

push rax
call "violation_handler"



Checking Contracts: Performance
Compilers are good at optimizing out redundant checks.

void baz(bar* ptr){
PRECONDITION(ptr!=nullptr);
foo(ptr);
foo(ptr);

}

"baz(bar*)":
sub rsp, 24
test rdi, rdi
je .L9
mov QWORD PTR [rsp+8], rdi
call "do_something(bar&)"
mov rdi, QWORD PTR [rsp+8]
add rsp, 24
jmp "do_something(bar&)"

"baz(bar*) [clone .cold]":
.L9:

call "violation_handler"



Checking Contracts: Performance
Compilers are good at optimizing out redundant checks.

void loop(){
bar values[10]{};

for(unsigned i=0;i<10;++i) {
baz(&values[i]);

}
}

"loop()":
push rbx
sub rsp, 16
lea rbx, [rsp+6]

.L12:
mov rdi, rbx
call "do_something(bar&)"
mov rdi, rbx
add rbx, 1
call "do_something(bar&)"
lea rax, [rsp+16]
cmp rax, rbx
jne .L12
add rsp, 16
pop rbx
ret



Violated Contracts
If a contract is violated, you have a bug.

In testing, notify the developer ASAP,
with the maximum information.

Break into debugger
Stack trace and core dump
Custom logging of state



Violated Contracts
If a contract is violated, you have a bug.

In testing, notify the developer ASAP,
with the maximum information.

Break into debugger
Stack trace and core dump
Custom logging of state



Violated Contracts
If a contract is violated, you have a bug.

In testing, notify the developer ASAP,
with the maximum information.

Break into debugger

Stack trace and core dump
Custom logging of state



Violated Contracts
If a contract is violated, you have a bug.

In testing, notify the developer ASAP,
with the maximum information.

Break into debugger
Stack trace and core dump

Custom logging of state



Violated Contracts
If a contract is violated, you have a bug.

In testing, notify the developer ASAP,
with the maximum information.

Break into debugger
Stack trace and core dump
Custom logging of state



Violated Contracts
In production, the violation handler
should do the safest thing for your use
case.

Safety Critical code might trigger a
watchdog to reset to a “known safe
state”.
Other codemay do something else.
Including continuing.



Violated Contracts
In production, the violation handler
should do the safest thing for your use
case.
Safety Critical code might trigger a
watchdog to reset to a “known safe
state”.

Other codemay do something else.
Including continuing.



Violated Contracts
In production, the violation handler
should do the safest thing for your use
case.
Safety Critical code might trigger a
watchdog to reset to a “known safe
state”.
Other codemay do something else.

Including continuing.



Violated Contracts
In production, the violation handler
should do the safest thing for your use
case.
Safety Critical code might trigger a
watchdog to reset to a “known safe
state”.
Other codemay do something else.
Including continuing.



SimpleWays to Avoid UB

Initialize all your variables
Use checked functions like at
Use span and string_view rather than raw
pointers
Use range-based for loops rather than indexing
Use RAII to manage lifetimes



SimpleWays to Avoid UB

Initialize all your variables

Use checked functions like at
Use span and string_view rather than raw
pointers
Use range-based for loops rather than indexing
Use RAII to manage lifetimes



SimpleWays to Avoid UB

Initialize all your variables
Use checked functions like at

Use span and string_view rather than raw
pointers
Use range-based for loops rather than indexing
Use RAII to manage lifetimes



SimpleWays to Avoid UB

Initialize all your variables
Use checked functions like at
Use span and string_view rather than raw
pointers

Use range-based for loops rather than indexing
Use RAII to manage lifetimes



SimpleWays to Avoid UB

Initialize all your variables
Use checked functions like at
Use span and string_view rather than raw
pointers
Use range-based for loops rather than indexing

Use RAII to manage lifetimes



SimpleWays to Avoid UB

Initialize all your variables
Use checked functions like at
Use span and string_view rather than raw
pointers
Use range-based for loops rather than indexing
Use RAII to manage lifetimes



Defense in Depth
Use the “Swiss Cheese” approach:

Design your system to minimize the
potential for problems

Use static analysis

Test with potentially problematic input

Fuzz test

Use sanitizers and hardened libraries

Use contracts



Defense in Depth
Use the “Swiss Cheese” approach:

Design your system to minimize the
potential for problems

Use static analysis

Test with potentially problematic input

Fuzz test

Use sanitizers and hardened libraries

Use contracts



Defense in Depth
Use the “Swiss Cheese” approach:

Design your system to minimize the
potential for problems

Use static analysis

Test with potentially problematic input

Fuzz test

Use sanitizers and hardened libraries

Use contracts



Defense in Depth
Use the “Swiss Cheese” approach:

Design your system to minimize the
potential for problems

Use static analysis

Test with potentially problematic input

Fuzz test

Use sanitizers and hardened libraries

Use contracts



Defense in Depth
Use the “Swiss Cheese” approach:

Design your system to minimize the
potential for problems

Use static analysis

Test with potentially problematic input

Fuzz test

Use sanitizers and hardened libraries

Use contracts



Defense in Depth
Use the “Swiss Cheese” approach:

Design your system to minimize the
potential for problems

Use static analysis

Test with potentially problematic input

Fuzz test

Use sanitizers and hardened libraries

Use contracts



Defense in Depth
Use the “Swiss Cheese” approach:

Design your system to minimize the
potential for problems

Use static analysis

Test with potentially problematic input

Fuzz test

Use sanitizers and hardened libraries

Use contracts



Software and Safety

Many types of software have safety consequences

Think carefully about desired behaviour
What is the “safe” behaviour if a problem is
discovered?
Use code patterns for avoiding problems
Use “Swiss Cheese” defense in depth



Software and Safety

Many types of software have safety consequences
Think carefully about desired behaviour

What is the “safe” behaviour if a problem is
discovered?
Use code patterns for avoiding problems
Use “Swiss Cheese” defense in depth



Software and Safety

Many types of software have safety consequences
Think carefully about desired behaviour
What is the “safe” behaviour if a problem is
discovered?

Use code patterns for avoiding problems
Use “Swiss Cheese” defense in depth



Software and Safety

Many types of software have safety consequences
Think carefully about desired behaviour
What is the “safe” behaviour if a problem is
discovered?
Use code patterns for avoiding problems

Use “Swiss Cheese” defense in depth



Software and Safety

Many types of software have safety consequences
Think carefully about desired behaviour
What is the “safe” behaviour if a problem is
discovered?
Use code patterns for avoiding problems
Use “Swiss Cheese” defense in depth



Announcement



Arene Base Library

Woven by Toyota is releasing our foundation-level C++
library for Safety-Critical Systems as Open Source.

It will be released under the Apache License 2.0 with
LLVM exception.

https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html


Arene Base Library

Woven by Toyota is releasing our foundation-level C++
library for Safety-Critical Systems as Open Source.

It will be released under the Apache License 2.0 with
LLVM exception.

https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html


Arene Base Library
Designed for C++14 and C++17 to comply with AUTOSAR and
MISRA coding guidelines

Includes a subset of C++ Standard Library for embedded
platforms

Provides containers without dynamic memory allocation such
as inline_vector, inline_map and inline_string

Provides backports of more recent library features such as
string_view, span and mdspan

Includes enforced preconditions for bounds checks



Arene Base Library
Designed for C++14 and C++17 to comply with AUTOSAR and
MISRA coding guidelines

Includes a subset of C++ Standard Library for embedded
platforms

Provides containers without dynamic memory allocation such
as inline_vector, inline_map and inline_string

Provides backports of more recent library features such as
string_view, span and mdspan

Includes enforced preconditions for bounds checks



Arene Base Library
Designed for C++14 and C++17 to comply with AUTOSAR and
MISRA coding guidelines

Includes a subset of C++ Standard Library for embedded
platforms

Provides containers without dynamic memory allocation such
as inline_vector, inline_map and inline_string

Provides backports of more recent library features such as
string_view, span and mdspan

Includes enforced preconditions for bounds checks



Arene Base Library
Designed for C++14 and C++17 to comply with AUTOSAR and
MISRA coding guidelines

Includes a subset of C++ Standard Library for embedded
platforms

Provides containers without dynamic memory allocation such
as inline_vector, inline_map and inline_string

Provides backports of more recent library features such as
string_view, span and mdspan

Includes enforced preconditions for bounds checks



Arene Base Library
Designed for C++14 and C++17 to comply with AUTOSAR and
MISRA coding guidelines

Includes a subset of C++ Standard Library for embedded
platforms

Provides containers without dynamic memory allocation such
as inline_vector, inline_map and inline_string

Provides backports of more recent library features such as
string_view, span and mdspan

Includes enforced preconditions for bounds checks



My Book
C++ Concurrency in Action

Second Edition
Covers C++17 and the
first Concurrency TS

45% discount fromManning until
24th November 2025 with code

meetingcpp25

https://hubs.la/Q03RQ9Q40

https://hubs.la/Q03RQ9Q40
https://hubs.la/Q03RQ9Q40


Questions?



Image Attributions
TheWoven by Toyota logo is copyright Woven by Toyota.

The following images are used (cropped and resized) under Creative Commons
Licenses:

Creative Commons Attribution 2 (CC-BY-2)

https://commons.wikimedia.org/wiki/File:
AirBaltic_Bombardier_CS300_launch_event_%2831581897816%29.jpg
https://www.flickr.com/photos/salsaboy/3844860345/

Creative Commons Attribution 4 (CC-BY-4)

https://universe.roboflow.com/final-year-project-e9b7f/
car-warning-light-symbol

https://creativecommons.org/licenses/by/2.0/deed.en
https://commons.wikimedia.org/wiki/File:AirBaltic_Bombardier_CS300_launch_event_%2831581897816%29.jpg
https://commons.wikimedia.org/wiki/File:AirBaltic_Bombardier_CS300_launch_event_%2831581897816%29.jpg
https://www.flickr.com/photos/salsaboy/3844860345/
https://creativecommons.org/licenses/by/4.0/deed.en
https://universe.roboflow.com/final-year-project-e9b7f/car-warning-light-symbol
https://universe.roboflow.com/final-year-project-e9b7f/car-warning-light-symbol


Image Attributions
Create Commons Attribution Share-Alike 2 (CC-BY-SA-2)

https://commons.wikimedia.org/wiki/File:
Giant_Assassin_Bug_(Platymeris_guttatipennis)_(11838791835).jpg
Create Commons Attribution Share-Alike 3 (CC-BY-SA-3)

https://commons.wikimedia.org/wiki/File:UnknownUnknownsEN.svg

Create Commons Attribution Share-Alike 4 (CC-BY-SA-4)

https://commons.wikimedia.org/wiki/File:CPI_Microlyth_Pacemaker.jpg
https://commons.wikimedia.org/wiki/File:
Stack_trace_at_Katajanokka_Terminal.jpg

https://creativecommons.org/licenses/by-sa/2.0/deed.en
https://commons.wikimedia.org/wiki/File:Giant_Assassin_Bug_(Platymeris_guttatipennis)_(11838791835).jpg
https://commons.wikimedia.org/wiki/File:Giant_Assassin_Bug_(Platymeris_guttatipennis)_(11838791835).jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:UnknownUnknownsEN.svg
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://commons.wikimedia.org/wiki/File:CPI_Microlyth_Pacemaker.jpg
https://commons.wikimedia.org/wiki/File:Stack_trace_at_Katajanokka_Terminal.jpg
https://commons.wikimedia.org/wiki/File:Stack_trace_at_Katajanokka_Terminal.jpg


Image Attributions

The following images are Public Domain:

https://www.pexels.com/photo/a-person-making-a-payment-using-smartphone-5239806/
https://www.pexels.com/photo/a-woman-playing-video-game-7915492/
https://www.pexels.com/photo/dogs-lying-beside-the-gray-laptop-9040443/
https://commons.wikimedia.org/wiki/File:Masskruege.jpg
https://www.publicdomainpictures.net/en/view-image.php?image=42717&picture=
ekg-electrocardiogram
https://picryl.com/media/
a-sailor-operates-the-spn-43-air-search-radar-system-while-standing-approach-8473ae
https://openclipart.org/detail/337098/contract-signed
https://www.needpix.com/photo/1106547/

https://www.pexels.com/photo/a-person-making-a-payment-using-smartphone-5239806/
https://www.pexels.com/photo/a-woman-playing-video-game-7915492/
https://www.pexels.com/photo/dogs-lying-beside-the-gray-laptop-9040443/
https://commons.wikimedia.org/wiki/File:Masskruege.jpg
https://www.publicdomainpictures.net/en/view-image.php?image=42717&picture=ekg-electrocardiogram
https://www.publicdomainpictures.net/en/view-image.php?image=42717&picture=ekg-electrocardiogram
https://picryl.com/media/a-sailor-operates-the-spn-43-air-search-radar-system-while-standing-approach-8473ae
https://picryl.com/media/a-sailor-operates-the-spn-43-air-search-radar-system-while-standing-approach-8473ae
https://openclipart.org/detail/337098/contract-signed
https://www.needpix.com/photo/1106547/

