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Software with Safety Consequences
Failure can cause quality-of-life problems for users
— e.g. loss of money, loss of work, loss of trust,
exposure of personal details, identity theft.
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Code with UB can do anything at all. This is likely
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quence of an unexpected event.

If we are serious about “Safety”, we
need to work hard to ensure we elimi-
nate unexpected events.
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What if the input is invalid?
What if the input is valid on its own, but not in the
current system state?
What if the “input” is that something external isn’t
working as expected?

Can you design the system so these are “expected” and
handled gracefully?
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issues in production.
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Checking Contracts: if
You can often check preconditions in code:

// precondition: ptr must not be null
void foo(bar* ptr) {

if(ptr == nullptr) { // contract check
precondition_violated();

}
do_something(*ptr);

}
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Checking Contracts: Static Analysis
You can often check preconditions in code:

// precondition: ptr must not be null
void foo(bar* ptr) {

/*@ requires @*/ // CodeQL Annotation
assert(ptr != nullptr);

do_something(*ptr);
}



Checking Contracts: Performance
A checked contract requires evaluating the condition,
and branching to the handler on failure.

void foo(bar* ptr) {
PRECONDITION(ptr != nullptr);
do_something(*ptr);

}

"foo(bar*)":
test rdi, rdi
je .L3
jmp "do_something(bar&)"

"foo(bar*) [clone .cold]":
.L3:

push rax
call "violation_handler"



Checking Contracts: Performance
Compilers are good at optimizing out redundant checks.

void baz(bar* ptr){
PRECONDITION(ptr!=nullptr);
foo(ptr);
foo(ptr);

}

"baz(bar*)":
sub rsp, 24
test rdi, rdi
je .L9
mov QWORD PTR [rsp+8], rdi
call "do_something(bar&)"
mov rdi, QWORD PTR [rsp+8]
add rsp, 24
jmp "do_something(bar&)"

"baz(bar*) [clone .cold]":
.L9:

call "violation_handler"



Checking Contracts: Performance
Compilers are good at optimizing out redundant checks.

void loop(){
bar values[10]{};

for(unsigned i=0;i<10;++i) {
baz(&values[i]);

}
}

"loop()":
push rbx
sub rsp, 16
lea rbx, [rsp+6]

.L12:
mov rdi, rbx
call "do_something(bar&)"
mov rdi, rbx
add rbx, 1
call "do_something(bar&)"
lea rax, [rsp+16]
cmp rax, rbx
jne .L12
add rsp, 16
pop rbx
ret
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In testing, notify the developer ASAP,
with the maximum information.

Break into debugger
Stack trace and core dump
Custom logging of state
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Safety Critical code might trigger a
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Designed for C++14 and C++17 to comply with AUTOSAR and
MISRA coding guidelines

Includes a subset of C++ Standard Library for embedded
platforms

Provides containers without dynamic memory allocation such
as inline_vector, inline_map and inline_string

Provides backports of more recent library features such as
string_view, span and mdspan

Includes enforced preconditions for bounds checks
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My Book
C++ Concurrency in Action

Second Edition
Covers C++17 and the
first Concurrency TS

45% discount fromManning until
24th November 2025 with code

meetingcpp25

https://hubs.la/Q03RQ9Q40

https://hubs.la/Q03RQ9Q40
https://hubs.la/Q03RQ9Q40


Questions?
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