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What is this talk about?

You've debugged a race condition that shouldn’t have
happened...

What if your concurrency diagram could just run?
That diagram is a Petri Net.
We turned it into a distributed simulator in C++23.

e We want share the architecture and performance story.

"From formal models to real systems — where math meets C++
through the state equation."
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1. Context & motivation

2. Objectives

3. Extended state equation
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5. Design patterns & modern C++
6. Algorithmic design
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8. Questions & closing

4133



Petri Nets: Recap

e Introduced by Carl Adam Petri in 1962
— in his PhD thesis at the University
of Bonn.

Carl Adam Petri (1926 -

2010)

5/33



Petri Nets: Recap

e Introduced by Carl Adam Petri in 1962
— in his PhD thesis at the University
of Bonn.

e One of the first mathematical models
of concurrent computation.

Carl Adam Petri (1926 -

2010)

5/33



Petri Nets: Recap

e Introduced by Carl Adam Petri in 1962
— in his PhD thesis at the University
of Bonn.

e One of the first mathematical models
of concurrent computation.

e Represents systems as a bipartite
graph:

Carl Adam Petri (1926 -

2010)

5/33



Petri Nets: Recap

e Introduced by Carl Adam Petri in 1962
— in his PhD thesis at the University
of Bonn.

e One of the first mathematical models
of concurrent computation.

e Represents systems as a bipartite
graph:

¢ Places (circles): hold tokens
(resources/states)

Carl Adam Petri (1926 -

2010)

5/33



Petri Nets: Recap

e Introduced by Carl Adam Petri in 1962
— in his PhD thesis at the University
of Bonn.

e One of the first mathematical models
of concurrent computation.
e Represents systems as a bipartite
graph:
¢ Places (circles): hold tokens

(resources/states)
* Transitions (rectangles):

consume/produce tokens N
Carl Adam Petri (1926 -

2010)

5/33



Petri Nets: Recap

e Introduced by Carl Adam Petri in 1962
— in his PhD thesis at the University
of Bonn.

e One of the first mathematical models
of concurrent computation.
e Represents systems as a bipartite
graph:
¢ Places (circles): hold tokens

(resources/states)
* Transitions (rectangles):

consume/produce tokens N
* Arcs: define causal relationships Carl Adam Petri (1926 -

2010)

5/33



Petri Nets: Recap

e Introduced by Carl Adam Petri in 1962
— in his PhD thesis at the University
of Bonn.

e One of the first mathematical models
of concurrent computation.
e Represents systems as a bipartite
graph:
¢ Places (circles): hold tokens
(resources/states)
* Transitions (rectangles):

consume/produce tokens N
* Arcs: define causal relationships Carl Adam Petri (1926 -

e A marking (token distribution) = 2010)
system’s global state

5/33



Petri Nets: Recap

So... what are they?

e Mathematical model for
concurrent systems

e Places (states) + Transitions
(events) + Tokens
(resources)

e Formal verification + Visual
representation

Extended Petri Nets add

¢ |nhibitor arcs (must be
zero)

e Reader arcs (test without Example: Producer-Consumer
consuming)

® Reset arcs (zero a place)
e Guards & time windows
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Why they still matter

e Formal verification and visual reasoning

e Natural fit for concurrent/distributed systems

e Applications: workflow, embedded control, protocols,
performance [1]

"Petri Nets are a visual debugger and design tool for complex
systems."
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Why this project?

e Existing PN tools: academic, monolithic, desktop-only

¢ No cloud-native simulator with distributed compute
backends

* Need: an open SaaS platform for teaching, analysis, and
research

Petri Net Saa$S Platform:
From Le o Cloud-Nativetve

Problem Solution
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Problem & inspiration

Traditional flow:
Model in PN — hand-translate to code — lose guarantees,
complex to do, error prone

Inspiration — PPX (Ventre, Micolini & Daniele) [2]:
Execute the model directly via an extended state equation on
hardware (FPGA)

Goal:
Bring PPX’s philosophy to a cloud-native C++23 backend (SaaS)
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Problem & inspiration

Discrete Semantics
(discrete events )

Time Semantics Stochastic Semantics
(continuous time)

(stochastic processes)

Petri nets with
'ceneralized distributions:
immediate transitions,
phase-type, etc.

Petri nets
with extended timing:
multiple intervals,
time streams, et

Petri nets
with generalized firing:
inhibitor arcs,
reset arcs, etc.

il ) T

Place-transition Ti . Stochastic
Perrinets | 10— > ime O] et nets
€Ll nets . Petri nets
Predicate-transition, . . Stochastic
Colored, etc. PNs I I Colored, etc. PNs
! 1

Abbreviations with ﬁ Increasing the IJIZII:> Extending the semantical
equal semantics modeling power domains

Semantics domains of the Petri net-based models [3] 10/3



Classical vs extended equation

Classical:
Mj-i-‘l = MI +1-0
Extended (PPX):
M s =M;+1- (o NEX)FA
where

ExX=EABALAGAZ

E enabled, B inhibitor, L reader, G guards, Z time windows; A resets.
This equation is the core of our C++ engine.[4]
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Extended step in C++23 (simplified)

struct Marking { std::vector<int> m; };

span<const bool> E, span<const bool> B,
span<const bool> L, span<const bool> G,
span<const bool> Z, span<const bool> sigma) {

vector<bool> Ex(E.size());
for (size_t t=0; t<Ex.size(); ++t)

O © ® N O Ul & W N o

size_t t = find_first_enabled(sigma & Ex);

if (t < Ex.size()) {
auto col = I.column(t);
for (size_t p=0; p<col.size(); ++p)
M.m[p]l += col[p];
3
}

O © ®J o FrF & N

auto step(Marking& M, mdspan<const int, dextents<2>> I,

Ex[t] = E[t] && B[t] && L[t] && G[t] && Z[t];
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System architecture (SaaS)
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System architecture (SaaS)

¢ Frontend: React + React Flow (editor + visualizer)
® Go BFF: orchestration (gRPC/HTTP/WS), RabbitMQ producer

e C++ engines: extended equation executor + analyses
(gRPC/AMQP)

e Storage: PNML/JSON; schemas for zero/single copy
(FlatBuffers)

Hybrid: software flexibility + optional HW/GPU acceleration
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System architecture (Saas)

System Context Diagram for PetiNet Studio

[—— [——
MongoDB Notification Service.

Stores Petri Net results and metadata Pushes async ob status to frontend

System Context Diagram for PetriNet Studio [3]
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C++ backend modules

Module Responsibility PPX analogue
model PN entities, validated builders Matrix program
math Incidence & kernels (dense/sparse) Calc. state
engine  Extended eq., coverability, invariants Core algorithm
runtime Pools, monitor, timers, telemetry Queues/policy
io PNML/JSON, FlatBuffers/Glaze Matrix loading

hw SIMD/GPU facades (PImpl) FPGA fabric

15/33



Patterns mapped to execution

e Strategy: firing policy (priority, deterministic, random)
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Patterns mapped to execution

e Strategy: firing policy (priority, deterministic, random)

e Policy-based: arithmetic (checked/saturating),
sparse/dense

¢ Builder: incidence & vectors from PNML/JSON
e Observer: progress/telemetry to BFF

¢ PImpl (Pointer to Implementation): GPU/AVX backends,
stable ABI

Not using: Visitor, Command, or Abstract Factory — we execute
matrices directly

16 /33



Concepts for Plug-in Safety (C++23)

1 template<typename Algo>

2 concept Algorithm =

3 requires (Algo a) {

4 { Algo::name() } ->
std::convertible_to<std::string_view>;

5 { a.execute(span<const int>{}, span<int>{}) }

6 -> std::same_as<std::expected<void,int>>;

7 ¥

8

9 struct Coverability {

o static constexpr std::string_view name() {

1 return "coverability”;

2 3

3 std::expected<void,int> execute(span<const int> I,

4 span<int> out);

5 B

6

7

8 static_assert(Algorithm<Coverability>);

Each analysis module (e.g., coverability, invariants, reachability) is validated at
compile time to match the system’s plugin contract — preventing ABI drift and

runtime errors.
17/33



Zero-copy with mdspan

2 auto incidence_view(const uint8_tx fb)

3 -> std::mdspan<const int32_t, std::dextents<size_t,2>>

4 {

5 auto mat = GetIncidenceMatrixFB(fb);

6 return { mat->data()->data(), mat->rows(), mat->cols()
¥

7 }

8

9

o M_new = M + incidence_view.column(t);

Efficient dataflow: the incidence matrix is accessed in-place from FlatBuffers via
std: :mdspan, avoiding copies and preserving cache locality during Petri Net
firing updates.
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Vectorizing the update (Cycle 2)

1 #include <experimental/simd>

2 using std::experimental::native_simd;

4 void add_column_simd(span<int> M, span<const int> col) {
5 size_t i = 0;

6 constexpr size_t width = native_simd<int>::size();
7

8 for (; i + width <= M.size(); i += width) {

9 native_simd<int> vm(&M[i], element_aligned);

o native_simd<int> vc(&col[i], element_aligned);

1 (vm + vc).copy_to(&M[i], element_aligned);

2 3

3

4

5 for (; i < M.size(); ++i)

6 MLi] += coll[i];

7 }

Cycle 2 — Update phase of the PPX: the selected transition acts as a column
selector of the incidence matrix. Vectorization with std: : simd accelerates the
marking update M;,, = M; + I. ; while preserving deterministic semantics.
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Structured Concurrency & Monitor Object Pattern

1 std::jthread worker ([&](std::stop_token st) {
2 while (!st.stop_requested()) {

3 std::unique_lock lock(monitor_mutex);
4

5 auto Ex = compute_Ex(M);

6 fire_transition(M, Ex);

7 notify_observers();

8 3

9 s

(o]

11

2 worker .request_stop();

L 1

Monitor Object Pattern: Encapsulates both state and synchronization inside an
object, ensuring that only one synchronized method executes at a time. Each
simulation thread acts as a monitor, serializing access to shared state (M) and
using wait/notify semantics for cooperative execution.

Unlike the Active Object pattern, the monitor does not run on a separate
thread — each request executes in the client's thread, maintaining invariants

and preventing data races.
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Structured Concurrency & Monitor Object Pattern

® Block diagram
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Execution Model: Single vs Parallel

Deterministic (single server):

while (!stop) {
auto Ex = compute_Ex(M);
auto t = pick_by_priority(Ex);
M += I.column(t);

s W N o

3

Parallel (maximal independent set):

1 while (!stop) {
2 auto Ex = compute_Ex(M);
3 parallel_for_each(enabled_clusters(Ex), [&](Cauto t) {
4 if (try_acquire_tokens(M, t))
M += I.column(t);
6 s
7 }

The deterministic model enforces serial firing order—suitable for validation and
debugging. The parallel model computes a maximal independent set of
non-conflicting transitions, allowing concurrent firing when token

dependencies do not overlap. Each firing unit behaves as a monitor, preserving
marking consistency through atomic token acquisition. 2/33
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Analyses beyond execution

Coverability:
® MinCowVec algorithm with w (unbounded)
e Cutoff heuristics (depth limit, hash pruning)
¢ GPU candidate: parallel frontier expansion

Invariants:
e P-invariants: y' - | = o (token conservation)
e T-invariants: | - x = o (cyclic firing sequences)
e Integer nullspace via Smith/Hermite normal form

Structural:

e Siphons/traps via SCC(Strongly Connected Components) and
feedback sets
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MinCovVec algorithm detailed

e Based on the extended state equation and the PPX model.

¢ Implements an optimized minimal coverability algorithm, [5]
MinCovVec.
e Extends Karp-Miller, Monotone-Pruning (MP), and MinCov
with:
e \ectorized state updates in C++20.
¢ Parallel firing and hash-based redundancy filtering.
e Controlled accelerations (w propagation) with bounded
memory.
e Achieves significant reduction in node count and runtime vs.
MP and MinCov.

2433



MinCovVec algorithm detailed: Pseudocode

(simplified)

1
2 initialize(root = M0@);
3 while (!pending.empty()) {
4 auto node = pending.pop();
5 for (auto t : enabled(node.M)) {
6 auto M_new = fire(node.M, t);
7 if (lexists_in(verSet, M_new)) {
8 accelerate(M_new, node.ancestors);
9 prune(verSet, M_new);
o verSet.insert(M_new);
1 pending.push(M_new);
n2 }
}
4 3

Parallel firing, hash filtering and w-acceleration based on MinCovVec [5].
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MinCovVec algorithm detailed: Block diagram

-
-
-

Pipeline of the algorithm
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Performance plan

e Data layout: SoA; contiguous incidence columns
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Performance plan

Data layout: SoA; contiguous incidence columns
Kernels: sparse vs dense; runtime dispatch via traits
SIMD: AVX-512 fastpath; baseline std: :simd
Zero-copy: FlatBuffers — mdspan views

¢ Execution modes: deterministic for pedagogy; parallel for
throughput

Metrics: P50/P9s5 step time, IPC, memory BW, contention

27/33
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Risks & trade-offs

Coverability blow-up: heuristics, time/memory caps
SIMD/GPU portability: complexity vs performance gains
Zero-copy safety: mdspan lifetime tied to arena scope
Plugin ABI: C boundary + PImpl for stability

Determinism vs speed: which should be default?
Numerical stability: exact integer arithmetic for invariants

28/33



We're still analyzing...

1. Plugin ABI: C interface + C++ Concepts — good balance?

29/33



We're still analyzing...

1. Plugin ABI: C interface + C++ Concepts — good balance?
2. Determinism: default on (pedagogy) or opt-in (perf)?

29/33



We're still analyzing...

1. Plugin ABI: C interface + C++ Concepts — good balance?
2. Determinism: default on (pedagogy) or opt-in (perf)?
3. Concurrency: coroutines vs thread pool in practice?

29/33



We're still analyzing...

1. Plugin ABI: C interface + C++ Concepts — good balance?
2. Determinism: default on (pedagogy) or opt-in (perf)?
3. Concurrency: coroutines vs thread pool in practice?

4. Observability: which metrics/traces would we add?

29/33



We're still analyzing...

LA DR SR A

Plugin ABI: C interface + C++ Concepts — good balance?
Determinism: default on (pedagogy) or opt-in (perf)?
Concurrency: coroutines vs thread pool in practice?
Observability: which metrics/traces would we add?

Hardware accel: when FPGA (PPX) vs software (C++) in
production?
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And this is the end...

Thank you for your time!

Let’s keep building bridges between models and
systems.

Slides & code: github.com/GabrielEValenzuela/petrinetstudio
Connect: @gabriel__val — github.com/GabrielEValenzuela

Thanks to the Petri Net community, the RUNIC network, and
everyone pushing open research forward.

30/33



References |

[1]

[2]

[3]

(4]

R. David and H. Alla, Discrete, Continuous, and Hybrid Petri
Nets. Springer, 2005.

L. O. Ventre, O. Micolini, and E. Daniele, “Extended petri net
processor for embedded systems,” in Congreso Argentino de
Ciencias de la Computacion (CACIC 2020), Cordoba,
Argentina, 2020, pp. 450-459.

M. Diaz, Petri nets: fundamental models, verification and
applications. John Wiley & Sons, 2013.

0. Micolini, “Arquitectura asimétrica multicore con
procesador de petri,” PhD in Ciencias Informaticas, Doctoral
thesis, Universidad Nacional de Cordoba, Cordoba,
Argentina, 2015.

31/33



References Il

[5] L.O.Ventre, O. Micolini, G. Valenzuela, and M. Ludemann,
“Redes de petri: Algoritmo para la construccion de arboles
de minima cobertura,” in SAIC 2024 (53° JAIIO), MinCovVec:
vectorized minimal coverability algorithm, Cordoba,
Argentina: SADIO, 2024.

32/33



Backup: Extended Arc Types

Arc Type Semantics Matrix
Classic (input) ~ Consume tokens to enable I (pre)
Classic (output) Produce tokens after firing I (post)
Inhibitor Enabled only if place is empty H
Reader Test tokens without consuming R
Reset Zero the place after firing Rst

Example: Mutual exclusion
e Place p, = "Resource available"
e Transition t, = "Acquire" (inhibitor from p, = "In use")

e t, enabled only if p, has tokens AND p, is empty
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