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What is this talk about?

• You’ve debugged a race condition that shouldn’t have
happened. . .

• What if your concurrency diagram could just run?
• That diagram is a Petri Net.
• We turned it into a distributed simulator in C++23.
• We want share the architecture and performance story.

"From formal models to real systems — where math meets C++
through the state equation."
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About me

• Gabriel Valenzuela
Computer Engineer (UNC), MSc
Software Engineering (UNLP)

• Professor at UNC, IEEE (CS/YP)
member, RUNIC network

• Senior C++ Developer at Wazuh
• Research: concurrency,

microservices, complex systems,
Petri Nets
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Agenda

1. Context & motivation

2. Objectives

3. Extended state equation

4. Architecture

5. Design patterns & modern C++

6. Algorithmic design

7. Performance & risks

8. Questions & closing
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Petri Nets: Recap

• Introduced by Carl Adam Petri in 1962
— in his PhD thesis at the University
of Bonn.

• One of the first mathematical models
of concurrent computation.

• Represents systems as a bipartite
graph:

• Places (circles): hold tokens
(resources/states)

• Transitions (rectangles):
consume/produce tokens

• Arcs: define causal relationships

• A marking (token distribution) =
system’s global state

Carl Adam Petri (1926 –

2010)
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Petri Nets: Recap
So... what are they?
• Mathematical model for

concurrent systems
• Places (states) + Transitions

(events) + Tokens
(resources)

• Formal verification + Visual
representation

Extended Petri Nets add
• Inhibitor arcs (must be

zero)
• Reader arcs (test without

consuming)
• Reset arcs (zero a place)
• Guards & time windows

Example: Producer-Consumer
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Why they still matter

• Formal verification and visual reasoning

• Natural fit for concurrent/distributed systems
• Applications: workflow, embedded control, protocols,

performance [1]

"Petri Nets are a visual debugger and design tool for complex
systems."
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Why this project?

• Existing PN tools: academic, monolithic, desktop-only

• No cloud-native simulator with distributed compute
backends

• Need: an open SaaS platform for teaching, analysis, and
research
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Problem & inspiration

Traditional flow:
Model in PN → hand-translate to code → lose guarantees,
complex to do, error prone

Inspiration — PPX (Ventre, Micolini & Daniele) [2]:
Execute the model directly via an extended state equation on
hardware (FPGA)

Goal:
Bring PPX’s philosophy to a cloud-native C++23 backend (SaaS)

9 / 33



Problem & inspiration

Semantics domains of the Petri net-based models [3] 10 / 33



Classical vs extended equation

Classical:
Mj+1 = Mj + I · σ

Extended (PPX):

Mj+1 = Mj + I · (σ ∧ Ex)#A

where
Ex = E ∧ B ∧ L ∧ G ∧ Z

E enabled, B inhibitor, L reader, G guards, Z time windows; A resets.
This equation is the core of our C++ engine.[4]
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Extended step in C++23 (simplified)

1 struct Marking { std::vector <int > m; };
2
3 auto step(Marking& M, mdspan <const int , dextents <2>> I,
4 span <const bool > E, span <const bool > B,
5 span <const bool > L, span <const bool > G,
6 span <const bool > Z, span <const bool > sigma) {
7 // Ex = E & B & L & G & Z
8 vector <bool > Ex(E.size());
9 for (size_t t=0; t<Ex.size(); ++t)

10 Ex[t] = E[t] && B[t] && L[t] && G[t] && Z[t];
11
12 // Pick first enabled (policy pluggable)
13 size_t t = find_first_enabled(sigma & Ex);
14
15 if (t < Ex.size()) {
16 auto col = I.column(t);
17 for (size_t p=0; p<col.size(); ++p)
18 M.m[p] += col[p]; // vectorize with std::simd
19 }
20 }
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System architecture (SaaS)

• Frontend: React + React Flow (editor + visualizer)

• Go BFF: orchestration (gRPC/HTTP/WS), RabbitMQ producer
• C++ engines: extended equation executor + analyses

(gRPC/AMQP)
• Storage: PNML/JSON; schemas for zero/single copy

(FlatBuffers)

Hybrid: software flexibility + optional HW/GPU acceleration
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System architecture (SaaS)

System Context Diagram for PetriNet Studio [3]

14 / 33



C++ backend modules

Module Responsibility PPX analogue

model PN entities, validated builders Matrix program
math Incidence & kernels (dense/sparse) Calc. state
engine Extended eq., coverability, invariants Core algorithm
runtime Pools, monitor, timers, telemetry Queues/policy
io PNML/JSON, FlatBuffers/Glaze Matrix loading
hw SIMD/GPU facades (PImpl) FPGA fabric
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Patterns mapped to execution

• Strategy: firing policy (priority, deterministic, random)

• Policy-based: arithmetic (checked/saturating),
sparse/dense

• Builder: incidence & vectors from PNML/JSON
• Observer: progress/telemetry to BFF
• PImpl (Pointer to Implementation): GPU/AVX backends,

stable ABI

Not using: Visitor, Command, or Abstract Factory — we execute
matrices directly
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Concepts for Plug-in Safety (C++23)
1 template <typename Algo >
2 concept Algorithm =
3 requires(Algo a) {
4 { Algo::name() } ->

std:: convertible_to <std:: string_view >;
5 { a.execute(span <const int >{}, span <int >{}) }
6 -> std::same_as <std::expected <void ,int >>;
7 };
8
9 struct Coverability {

10 static constexpr std:: string_view name() {
11 return "coverability";
12 }
13 std::expected <void ,int > execute(span <const int > I,
14 span <int > out);
15 };
16
17 // Compile -time enforcement of the interface contract
18 static_assert(Algorithm <Coverability >);

Each analysis module (e.g., coverability, invariants, reachability) is validated at
compile time to match the system’s plugin contract — preventing ABI drift and
runtime errors.
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Zero-copy with mdspan

1 // FlatBuffers schema yields contiguous int32_t array
(row -major)

2 auto incidence_view(const uint8_t* fb)
3 -> std::mdspan <const int32_t , std::dextents <size_t ,2>>
4 {
5 auto mat = GetIncidenceMatrixFB(fb);
6 return { mat ->data()->data(), mat ->rows(), mat ->cols()

}; // no copy!
7 }
8
9 // Use directly in engine

10 M_new = M + incidence_view.column(t);

Efficient dataflow: the incidence matrix is accessed in-place from FlatBuffers via
std::mdspan, avoiding copies and preserving cache locality during Petri Net
firing updates.
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Vectorizing the update (Cycle 2)

1 #include <experimental/simd >
2 using std:: experimental :: native_simd;
3
4 void add_column_simd(span <int > M, span <const int > col) {
5 size_t i = 0;
6 constexpr size_t width = native_simd <int >:: size();
7
8 for (; i + width <= M.size(); i += width) {
9 native_simd <int > vm(&M[i], element_aligned);

10 native_simd <int > vc(&col[i], element_aligned);
11 (vm + vc).copy_to (&M[i], element_aligned);
12 }
13
14 // Scalar tail
15 for (; i < M.size(); ++i)
16 M[i] += col[i];
17 }

Cycle 2 — Update phase of the PPX: the selected transition acts as a column
selector of the incidence matrix. Vectorization with std::simd accelerates the
marking update Mj+1 = Mj + I·,t while preserving deterministic semantics.
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Structured Concurrency & Monitor Object Pattern
1 std:: jthread worker ([&]( std:: stop_token st) {
2 while (!st.stop_requested ()) {
3 std:: unique_lock lock(monitor_mutex); // Monitor

guard
4
5 auto Ex = compute_Ex(M); // Enabled transitions
6 fire_transition(M, Ex); // Update marking safely
7 notify_observers (); // Push telemetry
8 }
9 });

10
11 // Cancel from controller
12 worker.request_stop (); // RAII: stop + join on

destruction

Monitor Object Pattern: Encapsulates both state and synchronization inside an
object, ensuring that only one synchronized method executes at a time. Each
simulation thread acts as a monitor, serializing access to shared state (M) and
using wait/notify semantics for cooperative execution.

Unlike the Active Object pattern, the monitor does not run on a separate
thread — each request executes in the client’s thread, maintaining invariants
and preventing data races.
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Structured Concurrency & Monitor Object Pattern

Block diagram
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Execution Model: Single vs Parallel
Deterministic (single server):

1 while (!stop) {
2 auto Ex = compute_Ex(M);
3 auto t = pick_by_priority(Ex);
4 M += I.column(t);
5 }

Parallel (maximal independent set):
1 while (!stop) {
2 auto Ex = compute_Ex(M);
3 parallel_for_each(enabled_clusters(Ex), [&]( auto t) {
4 if (try_acquire_tokens(M, t))
5 M += I.column(t);
6 });
7 }

The deterministic model enforces serial firing order—suitable for validation and
debugging. The parallel model computes a maximal independent set of
non-conflicting transitions, allowing concurrent firing when token
dependencies do not overlap. Each firing unit behaves as a monitor, preserving
marking consistency through atomic token acquisition. 22 / 33



Analyses beyond execution

Coverability:
• MinCovVec algorithm with ω (unbounded)

• Cutoff heuristics (depth limit, hash pruning)
• GPU candidate: parallel frontier expansion

Invariants:

• P-invariants: yT · I = 0 (token conservation)
• T-invariants: I · x = 0 (cyclic firing sequences)
• Integer nullspace via Smith/Hermite normal form

Structural:
• Siphons/traps via SCC(Strongly Connected Components) and

feedback sets
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MinCovVec algorithm detailed

• Based on the extended state equation and the PPX model.

• Implements an optimized minimal coverability algorithm, [5]
MinCovVec.

• Extends Karp–Miller, Monotone-Pruning (MP), and MinCov
with:

• Vectorized state updates in C++20.
• Parallel firing and hash-based redundancy filtering.
• Controlled accelerations (ω propagation) with bounded

memory.

• Achieves significant reduction in node count and runtime vs.
MP and MinCov.
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MinCovVec algorithm detailed: Pseudocode
(simplified)

1 // MinCovVec: minimal coverability tree (vectorized)
2 initialize(root = M0);
3 while (! pending.empty()) {
4 auto node = pending.pop();
5 for (auto t : enabled(node.M)) {
6 auto M_new = fire(node.M, t);
7 if (! exists_in(verSet , M_new)) {
8 accelerate(M_new , node.ancestors);
9 prune(verSet , M_new);

10 verSet.insert(M_new);
11 pending.push(M_new);
12 }
13 }
14 }

Parallel firing, hash filtering and ω-acceleration based on MinCovVec [5].
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MinCovVec algorithm detailed: Block diagram

Pipeline of the algorithm
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Performance plan

• Data layout: SoA; contiguous incidence columns

• Kernels: sparse vs dense; runtime dispatch via traits
• SIMD: AVX-512 fastpath; baseline std::simd

• Zero-copy: FlatBuffers → mdspan views
• Execution modes: deterministic for pedagogy; parallel for

throughput
• Metrics: P50/P95 step time, IPC, memory BW, contention
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Risks & trade-offs

• Coverability blow-up: heuristics, time/memory caps

• SIMD/GPU portability: complexity vs performance gains
• Zero-copy safety: mdspan lifetime tied to arena scope
• Plugin ABI: C boundary + PImpl for stability
• Determinism vs speed: which should be default?
• Numerical stability: exact integer arithmetic for invariants
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We’re still analyzing. . .

1. Plugin ABI: C interface + C++ Concepts — good balance?

2. Determinism: default on (pedagogy) or opt-in (perf)?
3. Concurrency: coroutines vs thread pool in practice?
4. Observability: which metrics/traces would we add?
5. Hardware accel: when FPGA (PPX) vs software (C++) in

production?
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And this is the end...

Thank you for your time!
Let’s keep building bridges between models and

systems.

Slides & code: github.com/GabrielEValenzuela/petrinetstudio
Connect: @gabriel__val — github.com/GabrielEValenzuela

Thanks to the Petri Net community, the RUNIC network, and
everyone pushing open research forward.
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Backup: Extended Arc Types

Arc Type Semantics Matrix

Classic (input) Consume tokens to enable I (pre)
Classic (output) Produce tokens after firing I (post)
Inhibitor Enabled only if place is empty H
Reader Test tokens without consuming R
Reset Zero the place after firing Rst

Example: Mutual exclusion
• Place p1 = "Resource available"
• Transition t1 = "Acquire" (inhibitor from p2 = "In use")
• t1 enabled only if p1 has tokens AND p2 is empty
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