
© 2018 Bloomberg Finance L.P. All rights reserved.

© 2025 Bloomberg Finance L.P. All rights reserved.

Sanitize for your Sanity:

Sanitizers tools for Modern

C++

Meeting C++ 2025

November 7, 2025

Evgenii Seliverstov

Senior Software Engineer

© 2018 Bloomberg Finance L.P. All rights reserved.

I am Evgenii Seliverstov

Senior Software Engineer in Bloomberg

PhD and academic research on GPUs and compilers

Write mostly C++ and Rust

Passionate about system and memory safety

Intro

Opinions expressed in this

talk are solely my own and

do not express the views or

opinions of my employer

Slides

@theirix

© 2018 Bloomberg Finance L.P. All rights reserved.

Outline

● Approaches

● Build

● Sanitize

● Case study

● Use

● Stay sane

© 2018 Bloomberg Finance L.P. All rights reserved.

Approaches to ensure safety

● Static analysis — no source code or binary changes

● Runtime analysis via emulation — no source code or binary changes

● Instrumentation — requires binary changes

● Rewrite your code — requires source code changes

© 2018 Bloomberg Finance L.P. All rights reserved.

Approaches to ensure safety

● Static analysis — no source code or binary changes
○ clang-tidy

○ cppcheck

○ SonarQube

○ PVS-Studio

○ CodeQL

● Runtime analysis via emulation — no source code or binary changes
○ valgrind

○ helgrind

● Instrumentation — requires binary changes
○ LLVM sanitizers

○ Memory tagging

○ dmalloc

○ IBM Purify

● Rewrite your code — requires source code changes

© 2018 Bloomberg Finance L.P. All rights reserved.

What are sanitizers?

Major sanitizer tools
● Address sanitizer

● Memory sanitizer

● Undefined sanitizer

● Thread sanitizer

Extra sanitizer tools
● Type sanitizer

● Data flow

● Control flow

● Safe stack

● Real-time sanitizer

© 2018 Bloomberg Finance L.P. All rights reserved.

Build

● How to build?

● How to package?

● Which flags to use?

© 2018 Bloomberg Finance L.P. All rights reserved.

Build system integration: Example

Easy when it’s a simple app

One directive only

Is that all?

App

cmake_minimum_required(VERSION 3.14)

project(main)

add_executable(main main.cxx)

target_compile_options(main PUBLIC -g -O1 -fsanitize=address)

© 2018 Bloomberg Finance L.P. All rights reserved.

Library
cmake_minimum_required(VERSION 3.14)
project(foo)
add_library(foo STATIC foo.cpp)

target_compile_options(foo PUBLIC

-g -fsanitize=address)

Build system integration: Library example

Static libraries: app → libfoo

Linker must be instructed about -fsanitize=address too

App
cmake_minimum_required(VERSION 3.14)
project(main)
add_executable(main main.cxx)

target_compile_options(main PUBLIC
-g -fsanitize=address)

target_link_libraries(main PUBLIC

-fsanitize=address)

© 2018 Bloomberg Finance L.P. All rights reserved.

Build system integration: Ways to enable

Extremely flexible

All options require a custom CMake invocation:

1. In-source changes

target_compile_options(foo …)

2. CMake option for CXX flags:

-DCMAKE_CXX_FLAGS=-fsanitize=address -fno-omit-frame-pointer -fno-common

3. CMake option:

-DENABLE_ASAN=True

4. Custom CMake build type:

-DCMAKE_BUILD_TYPE=ReleaseAsan

© 2018 Bloomberg Finance L.P. All rights reserved.

Build system integration: CMake toolchain

Just a file with set directives

No changes for the application

Toolchain file isolates all build flags

Standardized way

Flag -DCMAKE_TOOLCHAIN_FILE=./toolchain.cmake

Via CMake presets — IDE/CI friendly

~/toolchain.cmake

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_COMPILER clang++)

© 2018 Bloomberg Finance L.P. All rights reserved.

Package manager integration: Conan

Example for open source JFrog Conan package manager

Conan via profiles

Enable global flags per-profile

Not part of a package

Need to rebuild all projects locally

~/.conan2/profiles/asan
include(default)

[env]
CC=/opt/clang/bin/clang
CXX=/opt/clang/bin/clang++
CFLAGS=-fsanitize=address -fno-omit-frame-pointer
LDFLAGS=-fsanitize=address

Profile — Conan-specific system

manifest about compilers, CMake

flags and paths

© 2018 Bloomberg Finance L.P. All rights reserved.

Package manager integration: Conan

Conan supports CMake toolchains natively

Same profile

Standard toolchain is auto-generated for each build: build/conan_toolchain.cmake

Recommended way of extending CMake: Conan toolchain via user toolchain

~/.conan2/profiles/asan
include(default)

[conf]
tools.cmake.cmaketoolchain:user_toolchain+=

{{profile_dir}}/asan.add.toolchain.cmake

~/.conan2/profiles/asan.add.toolchain.cmake

set(CONAN_CXX_FLAGS "-fsanitize=address
-fno-omit-frame-pointer")

add_compile_options("-fsanitize=address")
link_libraries("-fsanitize=address")

© 2018 Bloomberg Finance L.P. All rights reserved.

Compiler flags

• Do not optimize call frames

• Use debug info

• Handle uninitialized variables

Readable stack frames

Equivalent behaviour

• Do not turn off optimisation

• Runs with adequate speed

• Avoid behavioural changes

• More about side-effects later

© 2018 Bloomberg Finance L.P. All rights reserved.

Build

With modern C++ build practices:

• No source code changes

• No build flags changes

• No build system manifest changes

Looks impressive!

© 2018 Bloomberg Finance L.P. All rights reserved.

Sanitize

What’s inside?

How does it work?

Dive deep into sanitizers

• Address

• Memory

• Thread

• Leak

Explore typical problems

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizers

The most used and useful one

Supported in Clang and GCC

Classes of errors:

• out-of-bounds

• use-after-free

• double-free

• use-after-return

© 2018 Bloomberg Finance L.P. All rights reserved.

How do address sanitizers work?

● During compile-time:

○ Instrument program

○ Replace memory access with special calls

○ On memory access, check if memory is accessible

○ For stack memory, guard it with special buffers

● During load-time:

○ Intercept memory-related libc calls with its own

○ Provide rich diagnostics when a program crashes

© 2018 Bloomberg Finance L.P. All rights reserved.

Let’s finally crash something

Heap break.

Array at 0x6020000000c0 — definitely heap (high addresses)

Bad access is 0x6020000000c8 — index 6 after 16-byte array

void main3() {
int* param =

new int[4];
param[0] = 1;
param[1] = 2;
param[2] = 3;
param[3] = 4;
int val = param[6];

}

clang 14

x86_64

macOS

© 2018 Bloomberg Finance L.P. All rights reserved.

How does it work: Shadow memory

Address 0x1c0400000010 in the map

But faulty memory is 0x6020000000c8

Shadow memory region

Mac: 0x100000000000..0x1fffffffffff

Linux: 0x00007fff8000..0x10007fff7fff

Real memory is tracked in shadow

• White bytes — addressable

• Colored bytes — poisoned

On poisoned access, raise the error immediately.

© 2018 Bloomberg Finance L.P. All rights reserved.

How does it work: Accessing

Twice memory usage in shadow?

Optimisation:

• Each 8-byte segment is coded in 1

shadow byte

• Heap allocations are aligned to 8 bytes

Accessing a byte in main memory is instrumented via

_asan_report_load4 functions:

1. Resolve a shadow address

2. If shadow is unpoisoned → ok (scenario 1-2)

3. If shadow is fully poisoned → report right away

4. If shadow is partially poisoned → check (scenario 1-3)

if a byte lies in a green part

© 2018 Bloomberg Finance L.P. All rights reserved.

Two kinds of memory

- Stack

- Heap

Stack memory is different

Runtime cannot control the address

Address sanitizer uses another approach

Linux

64-bit

© 2018 Bloomberg Finance L.P. All rights reserved.

Let’s crash the stack now

Each protected stack area is surrounded with red zones

Red zones are mapped to shadow memory

Aligned to 32 bytes

void main2()
{

int param[5] = {1, 2, 3, 4, 5};
char str[] = "testingtests";
int val = param[6];

}

20 bytes for param

12 + 1 bytes for str

© 2018 Bloomberg Finance L.P. All rights reserved.

Shadow memory: Stack allocations

The floor is red lava!

Left red zone — 20 bytes

8 bytes - 00

8 bytes - 00

4 bytes - 04

Mid-red zone — 13 bytes

8 bytes - 00

5 bytes - 05

Hitting poisoned zone triggers a sanitizer report

Sanitizer knows which stack variable is touched based on reverse mapping

© 2018 Bloomberg Finance L.P. All rights reserved.

How does it work: Marking memory

When to mark shadow memory

Intercepted functions:

• new/malloc/free/delete

• string functions

Intercept malloc:

• Resolve shadow memory address

• Mark shadow memory as addressable (0x00 .. 0x07)

Intercept free:

• Resolve shadow memory address

• Mark as freed (0xfd)

Heap

Allocation (malloc, new)

Free (free, delete)

Compiler and function support

Stack

Frame enter

Frame exit

Only compiler support

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizer: Costs

A matter of switching compiler flags

Typical slowdown: 2x

Binary size overhead: 2-3x

Memory overhead: 2-3x (mostly for stack)

Optimisations are applied everywhere:

• 8-to-1 shadow memory

• More compact shadow memory layout

• Merging checks for subsequent memory access

• Avoid extra checks based on flow analysis

© 2018 Bloomberg Finance L.P. All rights reserved.

Make it lighter: 1/3

Compile-time or run-time

Skip instrumentation:

• Critical for performance

• Different correctness requirements

• Disable for function — attribute __attribute__((no_sanitize("address"))

• Disable instrumenting a function or a type -fsanitize-ignorelist=ignores.txt

Run-time compatibility:

• Disable checks in external non-instrumented code

• ASAN_OPTIONS=suppressions=ignores.txt

© 2018 Bloomberg Finance L.P. All rights reserved.

Make it lighter: 2/3

Tune down instrumentation

• Leaner code

• Disable use-after-return -fsanitize-address-use-after-return=never

• Disable use-after-scope -fsanitize-address-use-after-scope

• Disable use-after-return runtime check

ASAN_OPTIONS=detect_stack_use_after_return=0.

Disable leak tracking

• ASAN_OPTIONS=detect_leaks=0

Trap mode

• Raise a signal SIGTRAP for program to handle -fsanitize-trap=all

© 2018 Bloomberg Finance L.P. All rights reserved.

Make it lighter: 3/3

Experimental hardware acceleration

Different flavour -fsanitize=hwaddress

Tagged memory support

AArch64 is supported

• mobile devices and mac CPUs

• server ARM CPUs

Intel is ongoing:

• Clang 14 (2022) / gcc 13 (2025)

• Intel LAM (Linear Address Masking) — Arrow Lake (2025)

GWP-ASan: Sampling-Based

Detection of Memory-Safety

Bugs in Production

arXiv:2311.09394

Memory Tagging and how it

improves C/C++ memory safety

arXiv:1802.09517

https://arxiv.org/abs/2311.09394
https://arxiv.org/abs/1802.09517
https://arxiv.org/abs/1802.09517

© 2018 Bloomberg Finance L.P. All rights reserved.

Leak Sanitizer

A part of address sanitizer

Enabled for free:

• Address sanitizer already intercepts malloc / free

• It’s enough to track memory

Reports leaks on program exit

Performance considerations:

• Leak check phase is expensive (pause threads, flood fill pointers)

• Use leak sanitizer without address sanitizer (better performance before leak

check)

• Compile-time flag -fsanitize=leak

© 2018 Bloomberg Finance L.P. All rights reserved.

Leak Sanitizer: Problems

Opinionated checks

Enabled depending on platform — ASAN_OPTIONS=detect_leaks=1

Specific program design

• Allocate a lot of things in main()

• Don’t care about deallocating on exit — not a leak

• Typically, a loop — incoming HTTP/RPC requests, Apache Kafka messages

• Ideally measure leaks for a processing iteration

© 2018 Bloomberg Finance L.P. All rights reserved.

Leak Sanitizer: Fine-grained checks

Tailored leak measurement

Internal LLVM function

__lsan_do_recoverable_leak_check

extern "C" { int __lsan_do_recoverable_leak_check(); }

void main4()
{

for (int counter = 0; counter < 4; ++counter)
{

process(counter);
if (__lsan_do_recoverable_leak_check())

{
std::cout << "Leaks detected\n";

}
std::this_thread::sleep_for(

std::chrono::seconds(5));
}

}

Accumulated leaks, not differential

© 2018 Bloomberg Finance L.P. All rights reserved.

Beyond Leak Sanitizer: jemalloc

Drop-in runtime replacement for malloc

Automatic mode:

• On exit, similar to leak-sanitizer: export MALLOC_CONF="prof:true”

Manual continuous mode:

• Time- or size-based report: export MALLOC_CONF="prof:true,lg_prof_interval:5”

Manual differential mode:

• Compile and link with jemalloc support: #include <jemalloc/jemalloc.h>

• Invoke mallctl("prof.active", …) to start leak tracking

• Invoke mallctl("prof.dump", …) to compare and report a difference

• Check profile file with a jeprof utility

© 2018 Bloomberg Finance L.P. All rights reserved.

Beyond Leak Sanitizer

jemalloc post-mortem

Google’s tcmalloc

More or less equivalent

Both not compatible with sanitizers

https://jasone.github.io/2025/06/12/jemalloc-postmortem
https://jasone.github.io/2025/06/12/jemalloc-postmortem
https://jasone.github.io/2025/06/12/jemalloc-postmortem

© 2018 Bloomberg Finance L.P. All rights reserved.

Platform support

Address sanitizer

Linux, macOS on x86 / x86_64

Leak sanitizer

clang on Linux x86_64

Apple clang on macOS x86_64

LLVM clang on macOS x86_64

macOS AArch64

Thread sanitizer

Linux, macOS on x86_64

Undefined behaviour sanitizer

Everywhere

Windows — MSVC, clang/MSVC, mingw?

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizer: False positives

Very rarely

Mixing instrumented and non-instrumented code

Totally fine with address sanitizer (NOT thread sanitizer)

Typical example: container overflow

• Source code of a container is not instrumented — it belongs to libc++ library

• Inline code is instrumented — it is compiled in application

• Mitigation from app-side: ASAN_OPTIONS=detect_container_overflow=0

• Mitigation from compiler: __sanitizer_annotate_contiguous_container

annotation on std containers

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizer: False negatives

False negatives for unaligned access

• Unaligned access is bad, however

Hardened code is not sanitised

• Debian and Gentoo hardening with -D_FORTIFY_SOURCE

© 2018 Bloomberg Finance L.P. All rights reserved.

Sanitizers: PIC and PIE

Source of confusion

Only thread and memory sanitizers require PIC/PIE

Symptoms during compile-time:
g++: error: -fsanitize=thread linking must be done with -pie or –shared

ld: relocation R_X86_64_32S cannot be used when making a shared object;
recompile with -fPIC

Symptoms during run-time:
==70588==ReserveShadowMemoryRange failed while trying to map
0xdfff0001000 bytes. Perhaps you're using ulimit -v

© 2018 Bloomberg Finance L.P. All rights reserved.

Sanitizers: PIC and PIE

PIC — for shared libraries to be loaded at arbitrary address

PIE — for executables to support ASLR (load at random address)

Code is built and linked as relocatable via offsets

For shared libraries, set -fPIC compilation flag (not -fPIE)

For executables, set -fPIC or -fPIE compilation flag and -pie linker flag

% readelf -h app-pie
app-pie: DYN (Position-Independent Executable file)

% readelf -h app-nonpie
app-nonpie: EXEC (Executable file)

© 2018 Bloomberg Finance L.P. All rights reserved.

Sanitizers: common problems

Memory limits are imposed via PAM (reserve terabytes of virtual, memory)

SELinux with mmap restrictions (used for shadow)

Memory overcommit is disabled (vm.overcommit_memory must be 0 or 1)

Another allocator (tcmalloc, jemalloc)

ASLR is disabled (check kernel.randomize_va_space)

Non-PIE binary

A non-PIC library in dependencies

© 2018 Bloomberg Finance L.P. All rights reserved.

Sanitizer runtime

Where do new symbols come from?

Runtime provides

• Memory load/store functions

• Reporting functions

• Interceptors

LLVM and GCC library implementations

Mix-and-match is prohibited

% nm libfoo.a | grep san
U __asan_handle_no_return
U __asan_init
U __asan_option_detect_stack_use_after_return
U __asan_register_globals
U __asan_report_load1
U __asan_report_load4
U __asan_report_load8
U __asan_report_store1
U __asan_report_store4
U __asan_report_store8
U __asan_stack_malloc_0
U __asan_stack_malloc_2
U __asan_stack_malloc_3
U __asan_unregister_globals
U __asan_version_mismatch_check_v8

© 2018 Bloomberg Finance L.P. All rights reserved.

Sanitizer runtime per platform

Linux Clang — static by default

Linux GCC — shared by default

% ldd ./build/app/app | grep san

libasan.so.8 => /lib/x86_64-linux-gnu/libasan.so.8 (0x00007fa178400000)

To link sanitizer statically, specify linker flag -static-libasan

macOS — only shared sanitizer

Another mechanism rather than LD_PRELOAD

A list of interceptors in __DATA section of a binary

© 2018 Bloomberg Finance L.P. All rights reserved.

Case of Bloomberg

Linux, GCC

Use of CMake toolchains

Statically linked sanitiser -static-libasan

Huge support from tooling and CI

• Different CMake toolchains for prod and instrumented builds

• Build internals are isolated

• -DCMAKE_TOOLCHAIN_FILE=/opt/BBInstrumentationToolchain64.cmake

• -DBB_INSTRUMENTATION_TYPES=’ASAN;UBSAN’

Unit tests under sanitisers

Integration tests under sanitisers

© 2018 Bloomberg Finance L.P. All rights reserved.

Memory Sanitizer

Do not confuse with address sanitizer

Flags: -fsanitize=memory -fsanitize-memory-track-origins=2

Only one class of errors:

Reads from uninitialized memory

int* a = new int[10];
a[5] = 0;
// Uninitialized read (MSan)
printf("%d\n", a[1]);

int* a = new int[10];
a[5] = 0;
// Illegal read (ASan)
printf("%d\n", a[20]);

WARNING: MemorySanitizer:
use-of-uninitialized-value

Compare: address sanitizer

Detects illegal reads only

© 2018 Bloomberg Finance L.P. All rights reserved.

Memory Sanitizer: Costs

Much more expensive in runtime (2-3x slower)

Stops at first offence

Requires rebuild of all dependencies:

• Practically can run

• False positives when partially instrumented

• Suppressions could help

Requires relocatable binary -fPIE

Not a practical choice

Use ASan instead

© 2018 Bloomberg Finance L.P. All rights reserved.

Thread Sanitizer

It is hard to make a correct C++ multi-threaded program

Event harder to find bugs

Is it a feasible problem in C++?

Lack of language and library primitives

Fearless Concurrency is not achievable

Heuristics to detect races and concurrency problems

CppOnSea 2025

David Rowland

What can C++ learn

about thread safety from

other languages?

© 2018 Bloomberg Finance L.P. All rights reserved.

Thread Sanitizer: Heuristics

Best effort

// tsan_report.h

enum ReportType {
ReportTypeRace,
ReportTypeVptrRace,
ReportTypeUseAfterFree,
ReportTypeVptrUseAfterFree,
ReportTypeExternalRace,
ReportTypeThreadLeak,
ReportTypeMutexDestroyLocked,
ReportTypeMutexDoubleLock,
ReportTypeMutexInvalidAccess,
ReportTypeMutexBadUnlock,
ReportTypeMutexBadReadLock,
ReportTypeMutexBadReadUnlock,
ReportTypeSignalUnsafe,
ReportTypeErrnoInSignal,
ReportTypeDeadlock,
ReportTypeMutexHeldWrongContext

};

Simple race

Race on a complex object

Notification

Publishing objects without synchronization

Initializing objects without synchronization

Reader Lock during a write

Race on bit field

Double-checked locking

Race during destruction

Data race on vptr

Data race on vptr during construction

Race on free

Race during exit

Race on a mutex

Race on a file descriptor

© 2018 Bloomberg Finance L.P. All rights reserved.

Thread Sanitizer: Example 1

void main() {
static int state;
std::jthread t1([] { state = 44; });
std::jthread t2([] { state = 2; });

}

==================

WARNING: ThreadSanitizer: data race (pid=1774829)

Write of size 4 at 0x560e4b267b2c by thread T2:

#0 main5()::$_1::operator()() const app/main.cpp:10:30 (app+0xe8638)

Previous write of size 4 at 0x560e4b267b2c by thread T1:

#0 main5()::$_0::operator()() const app/main.cpp:9:30 (app+0xe8078)

Location is global 'main5()::state' of size 4 at 0x560e4b267b2c (app+0x1518b2c)

Thread T2 (tid=1774832, running) created by main thread at:

…

Thread T1 (tid=1774831, finished) created by main thread at:

…

SUMMARY: ThreadSanitizer: data race app/main.cpp:10:30 in main5()::$_1::operator()() const

==================

Let’s race

Simple race condition on a variable

Continues execution on race

© 2018 Bloomberg Finance L.P. All rights reserved.

Thread Sanitizer: example 2

__attribute__((__noinline__)) void blackbox() {}

void main6() {

bool done = false;

std::jthread t1([&done] {

while (!done) blackbox();

std::cout << "Unreachable" << std::endl;

});

std::jthread t2([&done] {

blackbox();

done = true;

});

}

SUMMARY: ThreadSanitizer: data race
app/main.cpp:27:12
in

main6()::$_1::operator()() const

Race condition on a variable

Changes execution flow

© 2018 Bloomberg Finance L.P. All rights reserved.

Thread Sanitizer: costs

Much more expensive in runtime (10x slower)

Typical slowdown: 10x

Memory overhead: 5-10x (more than ASan)

Requires relocatable binary -fPIE

Same approach to exclude code

A lot of false positives

libstdc++ cannot be instrumented — so, it’s intercepted!

% nm libclang_rt.tsan-x86_64.a | \
grep ' T ___interceptor_' | wc -l

570

___interceptor_pthread_mutex_lock
___interceptor_pthread_join
___interceptor_popen

© 2018 Bloomberg Finance L.P. All rights reserved.

Case study

We know how they work

How to use them in the real world:

• Cross-boundary interactions

• Static vs. shared libraries

• False positives and negatives

Cross-language support

© 2018 Bloomberg Finance L.P. All rights reserved.

Sanitizers in complex projects

Static linking is not supported at all

Shared libc++ or libstdc++

libc++ cannot be not instrumented

Use interceptor functions instead (sanitizer runtime)

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizers in complex projects: Static libraries

Instrument both app and library

Perfect case

Allocations from library are also tracked

Allocations can cross a boundary

No false positives or negatives

libc++ doesn’t need to be instrumented

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizers in complex projects: Static libraries

Only a library is instrumented, but not an application

Doesn’t work without build changes
f.cpp:(.text.asan.module_ctor[asan.module_ctor]+0x5): undefined reference to `__asan_init'

Executable must link to sanitizer library

Provide a linker flag -fsanitize=address

Fine since you control linking

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizers in complex projects: Static libraries

False negatives

Cross-boundary situation:

Memory allocated in the library

Make a bad access in the app

It isn’t flagged by the sanitizer

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizers in complex projects: Static libraries

Only executable is instrumented

Works fine

Allocations from executable are tracked

Allocations from the library are not tracked

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizers in complex projects: Dynamic libraries

Instrument both app and library

Perfect case

No false positives

No false negatives

Note: link with shared ASan runtime

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizers in complex projects: Dynamic libraries

Interesting case — only the library is instrumented

1. Originally executable wasn’t aware of sanitizers and linking libasan runtime

2. Rebuild library with ASan

3. Got this:

/build/app/app: symbol lookup error: /build/libfoo/libfoo.so:
undefined symbol: __asan_option_detect_stack_use_after_return

Solution: runtime must be preloaded:

LD_PRELOAD=/lib/x86_64-linux-gnu/libasan.so.8 ./app

© 2018 Bloomberg Finance L.P. All rights reserved.

pthread_lock_*
atomic_*
syscall

Thread sanitizers in complex projects

Only executable is instrumented

Bad behaviour in library is not checked — expected

Good behaviour in a library is checked — no false positives

• Would expect false positive since an app isn’t aware

• All pthread_lock_* dynamic calls are intercepted by TSan runtime

• But only if it is intercepted…

© 2018 Bloomberg Finance L.P. All rights reserved.

Thread sanitizers in complex projects: Example 1

Let’s crash with spinlocks!

// Shared library (non-instrumented)
static std::atomic<bool> spinlock{false};

void acquire_lock() {
while (spinlock.exchange(

true, std::memory_order_acquire)) ;
}

void release_lock() {
spinlock.store(false,

std::memory_order_release);
}

// App (instrumented)
int state = 0;

std::jthread t1([&] {
acquire_lock(); //TSAN: normal function
++state; //TSAN: read from T1
release_lock();

});
std::jthread t2([&] {

acquire_lock(); //TSAN: nothing special
++state; //TSAN: read from T1
release_lock();

});

But TSan could analyse acquire_lock / release_lock if instrumentation enabled

False positive (i.e., error is reported)

© 2018 Bloomberg Finance L.P. All rights reserved.

Thread sanitizers in complex projects: Example 2

// Shared library (non-instrumented)
static pthread_mutex_t mutex =

PTHREAD_MUTEX_INITIALIZER;

// pthread_mutex_lock is intercepted
void acquire_lock() { pthread_mutex_lock(&mutex); }

// pthread_mutex_lock is intercepted
void release_lock() { pthread_mutex_unlock(&mutex); }}

// App (instrumented)
int state = 0;

std::jthread t1([&] {
acquire_lock(); //TSAN: known
++state; //TSAN: read T1
release_lock();

});
std::jthread t2([&] {

acquire_lock(); //TSAN: known
++state; //TSAN: read T1
release_lock();

});

Function pthread_mutex_lock is intercepted in runtime

Let’s crash with system mutex!

No false positive (i.e., no errors reported)

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizers in cross-language projects

Integrating libraries in different languages

How does it work on cross-language barriers?

Deal with RIIR

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizers in Rust/C++: pure Rust app

// RUSTFLAGS="-Z sanitizer=address" cargo run -v

fn main() {

let mut v = vec![0, 1, 2, 3];

let mut ptr: *mut i32 = &mut v[0] as *mut i32;

ptr = ptr.wrapping_add(10);

let ub: i32 = unsafe { *ptr };

}

Rust can also crash

In unsafe

So could an unsafe Rust dependency

Sanitizers can help

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizers in cross-language projects

Dynamic C++ library — instrumented

Client application written in Rust — instrumented

Autogenerated bridge — instrumented

Must build Rust app with sanitizers

All components use static runtime

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizers in Rust/C++: bridge

Shared C++ library libfoo.so is linked to static ASan runtime

Using cxx crate to link to C++ library foo

Autogenerated

bridge with glue

types

Static library

cxxbridge.a
#[cxx::bridge]

mod ffi {

unsafe extern "C++" {

// int processString(const std::string& param, size_t len);

include!("/usr/local/include/foo.h");

fn processString(param: &CxxString, len: usize) -> i32;

} }

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizers in Rust/C++: bridge

#[cxx::bridge]

mod ffi {

unsafe extern "C++" {

// int processString(const std::string& param, size_t len);

include!("/usr/local/include/foo.h");

fn processString(param: &CxxString, len: usize) -> i32;

} }

Call C++ function from Rust code

Pass memory address from stack

Autogenerated

bridge with glue

types

Static library

cxxbridge.a

cxx::let_cxx_string!(param = "testingtests");

let result = ffi::processString(¶m, 100);

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizers in Rust/C++: example

==3490050==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7be09e9de120 …

READ of size 1 at 0x7be09e9de120 thread T0

#0 0x7fe0a0ca115c (/usr/local/lib/libfoo.so+0x515c)

#1 0x556536122ccf (rustapp/target/x86_64-unknown-linux-gnu/debug/rustapp+0x101ccf)

Stack overflow is caught

Nightly compiler

Unstable sanitizer feature

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizers in Rust/C++: Build 1/2

Build and integration are tricky

cxx build is done via custom build.rs script

Instrument bridge (flag)

Instrument app code (RUSTFLAGS)

Invocation: // RUSTFLAGS="-Z sanitizer=address" cargo build --target x86_64-unknown-linux-gnu

// build.rs
fn main() {

cxx_build::bridge("src/main.rs").flag("-fsanitize=address").compile("cxxbridge");

...
}

Cargo.toml
[package]
name = "rustapp"
edition = "2024"

[dependencies]
cxx = "1.0"

[build-dependencies]
cxx-build = "1.0"

© 2018 Bloomberg Finance L.P. All rights reserved.

Address sanitizers in Rust/C++: Build 2/2

Only link existing ASan static runtime (same as C++ library)

Do not tell linker -fsanitize=address

// build.rs
fn main() {

cxx_build::bridge("src/main.rs").flag("-fsanitize=address").compile("cxxbridge");

println!("cargo:rustc-link-lib=foo");
println!("cargo:rustc-link-lib=asan");
// NOT: println!(cargo:rustc-link-arg=-fsanitize=address”);

}

Rust own ASan librustc-nightly_rt.asan.a runtime is not compatible with LLVM:

==82818==Your application is linkedagainst incompatible ASan runtimes

© 2018 Bloomberg Finance L.P. All rights reserved.

Rust is built upon LLVM

Reuse LLVM sanitizer runtime and LLVM compiler back-end

Different binary of runtime (GCC vs LLVM vs Rust)

Same sanitizers:

- Heap

- Stack

- Leaks

Cross-language memory tracking is real

Address sanitizers in Rust/C++: summary

© 2018 Bloomberg Finance L.P. All rights reserved.

Use

Ok, we are convinced to use sanitizers

But how?

And where?

© 2018 Bloomberg Finance L.P. All rights reserved.

Using sanitizers: Unit tests

Run unit tests

Mandatory

Good if code coverage is enough

• Code paths are covered

Good if data coverage is enough

• It is rare

• Bad for data-driven applications

© 2018 Bloomberg Finance L.P. All rights reserved.

Using sanitizers: A problem with coverage

Coverage is not only for the code!

© 2018 Bloomberg Finance L.P. All rights reserved.

Using sanitizers: Integration tests

Run integration tests

More code paths exposed to sanitizers

Closer to real scenarios

Measure coverage for integration tests

© 2018 Bloomberg Finance L.P. All rights reserved.

Using sanitizers: Fuzzing

Coverage-guided runs of black-box program

with mutating input data

Akin to property-based testing (white box)

Good scenarios — structured input,

stateless:

• Library

• Database

• Codec

Bad scenarios — hard to isolate state:

• HTTP or RPC server

• Event-based systems

• Raw network monitoring

// fuzz_entry.cxx
extern "C" int LLVMFuzzerTestOneInput(

const uint8_t *Data, size_t Size)
{

RunSanitizedFunctonsOnInput(Data, Size);
return 0;

}

LLVM libfuzzer

Feeds mutating data

Provide an entrypoint

© 2018 Bloomberg Finance L.P. All rights reserved.

Using sanitizers: Production

Is it safe? NO!

Most sanitizers are stable, some are beta

Not intended to be production ready

Reduce problem surface — minimal runtime

Safety hierarchy (higher to lower):

• Undefined

• Address

• Leak

• Thread

• Memory

© 2018 Bloomberg Finance L.P. All rights reserved.

Using sanitizers: Production

• Fail or continue? Recovery strategies

• Address sanitizer

— Compile flag -fsanitize-recover=all

— Runtime ASAN_OPTIONS=halt_on_error=0

• Undefined sanitizer

— Just reports by default

— Trap and continue -fsanitize-undefined-trap-on-error

• Thread sanitizer

— By default, just reports

• Leak sanitizer

— On exit

— Can enable periodic reports (see above)

© 2018 Bloomberg Finance L.P. All rights reserved.

Using sanitizers: Production

Blue/green or canary deployment

• Evaluate the risks

• Real environment

• Part of user traffic goes to test instance

Mirroring data traffic

• Safe

• Must be fully isolated (mock or deployment)

• Output reconciliation

© 2018 Bloomberg Finance L.P. All rights reserved.

Wrap-up

Sanitizers are powerful tools

Available for major compilers and platforms

Open source implementations

Complex interaction at component boundaries

Tricky integration with build system

Better to run closer to the real system

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2025 Bloomberg Finance L.P. All rights reserved.

Thank you!

	Slide 1: Sanitize for your Sanity: Sanitizers tools for Modern C++
	Slide 2: Intro
	Slide 3: Outline
	Slide 4: Approaches to ensure safety
	Slide 5: Approaches to ensure safety
	Slide 6: What are sanitizers?
	Slide 7: Build
	Slide 8: Build system integration: Example
	Slide 9: Build system integration: Library example
	Slide 10: Build system integration: Ways to enable
	Slide 11: Build system integration: CMake toolchain
	Slide 12: Package manager integration: Conan
	Slide 13: Package manager integration: Conan
	Slide 14: Compiler flags
	Slide 15: Build
	Slide 16: Sanitize
	Slide 17: Address sanitizers
	Slide 18: How do address sanitizers work?
	Slide 19: Let’s finally crash something
	Slide 20: How does it work: Shadow memory
	Slide 21: How does it work: Accessing
	Slide 22: Two kinds of memory
	Slide 23: Let’s crash the stack now
	Slide 24: Shadow memory: Stack allocations
	Slide 25: How does it work: Marking memory
	Slide 26: Address sanitizer: Costs
	Slide 27: Make it lighter: 1/3
	Slide 28: Make it lighter: 2/3
	Slide 29: Make it lighter: 3/3
	Slide 30: Leak Sanitizer
	Slide 31: Leak Sanitizer: Problems
	Slide 32: Leak Sanitizer: Fine-grained checks
	Slide 33: Beyond Leak Sanitizer: jemalloc
	Slide 34: Beyond Leak Sanitizer
	Slide 35: Platform support
	Slide 36: Address sanitizer: False positives
	Slide 37: Address sanitizer: False negatives
	Slide 38: Sanitizers: PIC and PIE
	Slide 39: Sanitizers: PIC and PIE
	Slide 40: Sanitizers: common problems
	Slide 41: Sanitizer runtime
	Slide 42: Sanitizer runtime per platform
	Slide 43: Case of Bloomberg
	Slide 44: Memory Sanitizer
	Slide 45: Memory Sanitizer: Costs
	Slide 46: Thread Sanitizer
	Slide 47: Thread Sanitizer: Heuristics
	Slide 48: Thread Sanitizer: Example 1
	Slide 49: Thread Sanitizer: example 2
	Slide 50: Thread Sanitizer: costs
	Slide 51: Case study
	Slide 52: Sanitizers in complex projects
	Slide 53: Address sanitizers in complex projects: Static libraries
	Slide 54: Address sanitizers in complex projects: Static libraries
	Slide 55: Address sanitizers in complex projects: Static libraries
	Slide 56: Address sanitizers in complex projects: Static libraries
	Slide 57: Address sanitizers in complex projects: Dynamic libraries
	Slide 58: Address sanitizers in complex projects: Dynamic libraries
	Slide 59: Thread sanitizers in complex projects
	Slide 60: Thread sanitizers in complex projects: Example 1
	Slide 61: Thread sanitizers in complex projects: Example 2
	Slide 62: Address sanitizers in cross-language projects
	Slide 63: Address sanitizers in Rust/C++: pure Rust app
	Slide 64: Address sanitizers in cross-language projects
	Slide 65: Address sanitizers in Rust/C++: bridge
	Slide 66: Address sanitizers in Rust/C++: bridge
	Slide 67: Address sanitizers in Rust/C++: example
	Slide 68: Address sanitizers in Rust/C++: Build 1/2
	Slide 69: Address sanitizers in Rust/C++: Build 2/2
	Slide 70: Address sanitizers in Rust/C++: summary
	Slide 71: Use
	Slide 72: Using sanitizers: Unit tests
	Slide 73: Using sanitizers: A problem with coverage
	Slide 74: Using sanitizers: Integration tests
	Slide 75: Using sanitizers: Fuzzing
	Slide 76: Using sanitizers: Production
	Slide 77: Using sanitizers: Production
	Slide 78: Using sanitizers: Production
	Slide 79: Wrap-up
	Slide 80: Thank you!

