Sanitize for your Sanity:

Sanitizers tools for Modern
C++

Meeting C++ 2025 IR AR A S e
November 7, 2025 ‘;@, R R A

Evgenii Seliverstov
Senlor Software Englneer

TechAtBloomberg.com

berg Finance L.P. All rights reserved

rm
-
(@
[y
=
(D
(D
ﬂ
HI
-
(&

Biaquoo|g

Intro

| am Evgenii Seliverstov Opinions expressed in this
talk are solely my own and
do not express the views or
opinions of my employer

Senior Software Engineer in Bloomberg

PhD and academic research on GPUs and compilers

—
Write mostly C++ and Rust Slides Eilirwr"'.'hE
b i

Passionate about system and memory safety Jﬁ-ra'h -
=

!

-I.-r =" 1

@theirix . m m Bloomberg

Outline

o Approaches
o Build

« Sanitize

o Case study
« Use

« Stay sane

Bloomberg

Approaches to ensure safety

Static analysis — no source code or binary changes

Runtime analysis via emulation — no source code or binary changes

« Instrumentation — requires binary changes

Rewrite your code — requires source code changes

Bloomberg
Enginr:e ring

Approaches to ensure safety

Static analysis — no source code or binary changes
clang-tidy

cppcheck

SonarQube

PVS-Studio

CodeQL

« Runtime analysis via emulation — no source code or binary changes
o valgrind
o helgrind

o Instrumentation — requires binary changes
o LLVM sanitizers
o Memory tagging
o dmalloc
o IBM Purify

« Rewrite your code — requires source code changes

o O O O O

Bloomberg
Enginr:e ring

What are sanitizers?

Major sanitizer tools

« M Address sanitizer

o A Memory sanitizer

« M Undefined sanitizer
« A Thread sanitizer

Extra sanitizer tools = A m
. % Type sanitizer \]/\/DE THREAi WA Q{
o 7 Data flow FINE SAN N
« 7 Control flow ‘SA s S A
. 7 Safe stack ——

« 7 Real-time sanitizer

Build

o How to build?
« How to package?

o Which flags to use?

-

uerE THREA’J

FINES

Build system integration: Example

Easy when it's a simple app
One directive only

Is that all?

cmake_minimum_required(VERSION 3.14)
project(main)

add_executable(main main.cxx)

target_compile_options(main PUBLIC -g -01 -fsanitize=address)

Bloomberg
Enginr:e ring

Build system integration: Library example

Static libraries: app — libfoo

Linker must be instructed about -fsanitize=address too

App # Library
cmake_minimum_required(VERSION 3.14) cmake_minimum_required (VERSION 3.14)
project(main) project(foo)
add_executable(main main.cxx) add_library(foo STATIC foo.cpp)
target_compile_options(main PUBLIC target_compile_options(foo PUBLIC

-g -fsanitize=address) -g -fsanitize=address)

target_link_libraries(main PUBLIC

-fsanitize=address)

Bloomberg

?'j,' < 5

Build system integration: Ways to enable

Extremely flexible
All options require a custom CMake invocation:

1. In-source changes
target compile options(foo ...)

2. CMake option for CXX flags:
-DCMAKE_CXX FLAGS=-fsanitize=address -fno-omit-frame-pointer -fno-common
3. CMake option:
-DENABLE_ASAN=True
4. Custom CMake build type:
-DCMAKE_BUILD_TYPE=ReleaseAsan Bloomberg

Engineering

A
LA

Build system integration: CMake toolchain

Just a file with set directives

~/toolchain.cmake

No Changes for the application set(CMAKE _SYSTEM_NAME Linux)
set (CMAKE_SYSTEM_PROCESSOR arm)
set (CMAKE_CXX_STANDARD 17)

Toolchain file isolates all build flags set (CMAKE_CXX_COMPILER clang++)

Standardized way
Flag -DCMAKE_TOOLCHAIN_FILE=./toolchain.cmake

Via CMake presets — IDE/CI friendly

Bloomberg

Package manager integration: Conan

Example for open source JFrog Conan package manager

Conan via profiles

Profile — Conan-specific system

Enable global flags per-profile manifest about compilers, CMake
flags and paths

Not part of a package

Need to rebuild all projects locally

include(default)

[env]
- CC=/opt/clang/bin/clang
 CXX=/opt/clang/bin/clang++
- CFLAGS=-fsanitize=address -fno-omit-frame-pointer

,"H' f LDFLAGS=-fsanitize=address

Package manager integration: Conan

Conan supports CMake toolchains natively
Same profile

Standard toolchain is auto-generated for each build: build/conan toolchain.cmake

Recommended way of extending CMake: Conan toolchain via user toolchain

include(default)
set (CONAN_CXX_FLAGS "-fsanitize=address

[conf] -fno-omit-frame-pointer")
tools.cmake.cmaketoolchain:user_toolchain+= - | . ,) . :
- add_compile_options("-fsanitize=address")

{{proflle_dlr}}/asan.add.toolchaln.cmgke :;_1¥Uk-1ibf§FiQS("'fsanitizezaddressn)

Compiler flags

Do not optimize call frames

Use debug info = Readable stack frames
Handle uninitialized variables

Do not turn off optimisation
Runs with adequate speed
Avoid behavioural changes
More about side-effects later

= Equivalent behaviour

Bloomberg
Enginr:e ring

Build

With modern C++ build practices:
No source code changes
No build flags changes
No build system manifest changes

Looks impressive!

Bloomberg
Enginr:e ring

Sanitize

What's inside?
How does it work?

Dive deep into sanitizers

Address .
Memory
Thread UNPE THRE[J \\;\/A R
FIN ES . “
Leak 5N\/ SANV S AN S A

l;s —‘Z/‘; < ;_/@ - &. -::."-:"-:';':.

Explore typical problems | 4

Address sanitizers

The most used and useful one

Supported in Clang and GCC

Classes of errors:
out-of-bounds
use-after-free
double-free
use-after-return

Bloomberg
Enginr:e ring

How do address sanitizers work?

« During compile-time:
o Instrument program
o Replace memory access with special calls
o On memory access, check if memory is accessible
o For stack memory, guard it with special buffers

e During load-time:
o Intercept memory-related libc calls with its own
o Provide rich diagnostics when a program crashes

Bloomberg
Enginr:e ring

Let’s finally crash something R LERGRIG)

int* param =
new int[4];

Heap break. param[@] = 1;
param[1] = 2;
param[2] = 3;

Array at 0x6020000000c0 — definitely heap (high addresses) param[3] = 4;

int val = param[6];

Bad access is 0x6020000000c8 — index 6 after 16-byte array

==53423==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x6020000000c8 a
t pc 0x0001009bc35d bp Ox7ff7bf545ef0 sp Ox7ff7bf545ee8
READ of size 4 at 0x66200000008c8 thread TO

#0 Ox1089bc35c in main3() main.cpp:386

#1 8x1009bc418 in main main.cpp:34 clang 14
#2 06x10f58352d in start+@xlcd (dyld:x86_64+6x552d) x86 64
NEON]

Ox6020000000c8 is located 8 bytes to the right of 16-byte region [0x6020000000b0,0
x6020000000c0)
allocated by thread T@ here:
#0 0x100e5f31d in wrap__Znam+0x7d (libclang_rt.asan_osx_dynamic.dylib:x86_64h+
8x5c31d)
#1 ©6x10089bc18b in main3() main.cpp:22 EBI l)
#2 ©x1089bc418 in main main.cpp:34 oomberg

#3 Bx10f58352d in start+8x1cd (dyld:x86_64+6x552d)

Engineering

How does it work: Shadow memory
SUMMARY : AddressSanitizer: heap-buffer-overflow main.cpp:38 in main3()
: Shadow bytes around the buggy address:

AddreSS OX1CO4OOOOOO1 O In the map Bx1cB3ffffffco: 06 06 60 PO 6O 00 66 00 DO GO 6O OO 66 66 00 06

Bx1ce3ffffffdo: 06 06 60 60 00 06 06 6O 60 PO 0O 06 6O 6O b0 06

: Bx1co3ffffffeb: 00 OO 6O 60 OO OO OB 6O 6O OO OO OB 6O 6O OO 06

BUt faUIty memory IS OX6020000000C8 Bx1cO3fffffffo: 00 00 6O 60 6O 00 PO 6O 6O OO 00 PO 6O 6O 0O 08

Shadow memory fa fd fd fa fa 00 60 fa fa @0 04 fa fa 00 fa

i =30x1cB400000010 fa fa 00 B4 fa fa 00 00 fa[fa]fa fa fa fa fa fa

ShadOW memory reg|0n x1c W¥fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

Bx1cB4000000306: a fa fa fa fa fa fa fa fa fa fa fa fa fa fa

Mac: OX1000OOOOOOOOOX1fffffffffff 0x1cb4000000408: fa fanfa fa fa fa fa fa fa fa fa fa fa fa fa fa

Bx1cP4000000508: fa fa fa fa fa fa fa fa fa fa fa fa fa fa

LinUX: OXOOOO?fffSOOOOX10007fff7fff Bx1cB400000060: fa fa a fa fa fa fa fa fa fa fa fa fa fa

Shadow byte legend (one shadow represents 8 application bytes):

Addressable: 8o
Rea| memOry iS tracked in ShadOW Partially addressable: 81 62 63 84 86 a7
Heap left redzqne: fa Real memory
- White bytes — addressable Freed heap region: fd 0x6020000000¢8
_ Stack left redzone: f1
- Colored bytes — poisoned Stack mid redzone: f2
On poisoned access, raise the error immediately. Bloomberg

Engineering

Lt AT e L

Main memory (8 bytes) 1. resolve

How does it work: Accessing

0 1 2 3 5 6 7

DN
. ntuian,
Optimisation: | | -..-m..
- o

Twice memory usage in shadow?

Each 8-byte segment is coded in 1
shadow byte

sasds:
Heap allocations are aligned to 8 bytes |
how, Ill

Accessing a byte in main memory is instrumented via §
_asan_report_load4 functions: ...

Resolve a shadow address

If shadow is unpoisoned — ok (scenario 1-2)
If shadow is fully poisoned —

If shadow is partially poisoned —

if a byte lies in a green part s Bloomberg

BN~

Two kinds of memory

- Stack
- Heap

Stack memory is different

Runtime cannot control the address

Address sanitizer uses another approach

Linux
64-bit

App stack

OxXTFFFFFFrFfff o o

App memory

140 GB
0x10007fFff7fff

Shadow memory

Bloomberg
Enginr:e ring

A .
Let’s crash the stack now — ¥°1d main2 ()

int param[5] = {1, 2, 3, 4, 5}:

Each protected stack area is surrounded with red zones char str[] = "testingtests”;
int val = param[6];

Red zones are mapped to shadow memory ;

Aligned to 32 bytes 20 bytes for param

12 + 1 bytes for str

==92170==ERROR: AddressSanitizer: stack-buffer-overflow on address 8x7ff7b47c6f38
at pc 0x80010b73af88 bp 8x7ff7b47c6ef® sp Ox7ff7b47c6eel
READ of size 4 at Ox7ff7b47c6f38 thread TO

#0 0x10b73af7f in main2() main.cpp:16

#1 0x10b73b3f8 in main main.cpp:34

#2 0x11144952d in start+@xlcd (dyld:x86_64+8x552d)

Address Bx7ff7b47c6f38 is located in stack of thread T at offset 56 in frame
#0 Ox10b73ae2f in main2() main.cpp:12

This frame has 2 object(s):
[32, 52) 'param' (line 13) <== Memory access at offset 56 overflows this vari Bloomberg

able
[96, 189) 'str' (line 14)

Engineering

Shadow memory: Stack allocations

SUMMARY : AddressSanitizer: stack-buffer-overflow main.cpp:16 in main2()
- Shadow bytes around the buggy address:
The floor is red laval ox1ffef68f8d90: 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 60 0P
Bx1ffef68f8daB: 00 00 0B 60 00 00 6O 0O 00 00 PO OO 60 00 OO 06
Bx1ffefo8f8dbo: 60 66 60 60 60 66 0O 6O OO B0 6O OO BB 0O 6O 66

ox1ffef68f8dcO: 60 00 00 00 60 60 00 00 00 60 00 00 08 00 00 00
Left red zone — 20 bytes ox1ffef68f8ddo: 60 60 00 0O 60 00 00 00 00 00 00 00 08 00 00 00
8 bytes - 00 =>0x1ffef68f8ded: f1 f1 f1 f1 00 00 04[f2]f2 f2 f2 f2 00 85 f3 3
ox1ffef68f8dfe: 60 60 00 60 60 60 60 00 00 60 00 00 08 00 00 00

8 t))/tegsg - 00 ex1ffef68f8e00: 60 00 06 B0 60 00 06 60 00 0O 00 60 00 06 B0 00
ox1ffef68f8e10: 60 00 00 60 60 60 00 00 00 60 00 00 06 00 00 00

4 bytes - 04 Ox1ffef68f8e20: 00 00 0O 00 0O @0 00 00 60 0O 00 00 08 00 00 00

Bx1ffef68f8e36: 6O 06 00 0O 0O 00 PO 0O 00 0O VD OO 00 OO 0O 00
Shadow byte legend (one shadow byte represents 8 application bytes):

I Addressable: ee
Mid-red zone — 13 bytes Partially addressable: 81 02 83 04 85 06 07
- Heap left redzone: fa
8 bytes OO Freed heap region: fd
5 byteS - 05 Stack left redzone: f1
Stack mid redzone: f2
Stack right redzone: f3

Hitting poisoned zone triggers a sanitizer report

Sanitizer knows which stack var_igp_le is touched based on reverse mapping

T y i " - S By Ll = -
LT | e = o - 3 PR s 1 5l
R L T o . .2 . P I

ki T o O g T I L R A T i o

How does it work: Marking memory
Heap

When to mark shadow memory
Allocation (malloc, new)
Intercepted functions:
new/malloc/free/delete Compiler and function support
string functions

Intercept malloc: Stack
Resolve shadow memory address
Mark shadow memory as addressable (0x00 .. 0x07) Frame enter

Intercept free:

Only compiler support
Resolve shadow memory address

Mark as freed (0Oxfd) Bloomberg

Address sanitizer: Costs

A matter of switching compiler flags

Typical slowdown: 2x

Binary size overhead: 2-3x

Memory overhead: 2-3x (mostly for stack)

Optimisations are applied everywhere:
8-to-1 shadow memory

More compact shadow memory layout

Merging checks for subsequent memory access
Avoid extra checks based on flow analysis

Bloomberg
Enginr:e ring

Make it lighter: 1/3

Compile-time or run-time

Skip instrumentation:
Critical for performance
Different correctness requirements
Disable for function — attribute attribute ((no_sanitize("address"))
Disable instrumenting a function or a type -fsanitize-ignorelist=ignores.txt

Run-time compatibility:
Disable checks in external non-instrumented code
ASAN _OPTIONS=suppressions=ignores.txt

Bloomberg

i

Make it lighter: 2/3

Tune down instrumentation
Leaner code
Disable use-after-return -fsanitize-address-use-after-return=never
Disable use-after-scope -fsanitize-address-use-after-scope

Disable use-after-return runtime check
ASAN_ OPTIONS=detect stack use after return=0.

Disable leak tracking
ASAN_ OPTIONS=detect leaks=0

Trap mode
Raise a signal SIGTRAP for program to handle -fsanitize-trap=all

Bloomberg

Engineering

h{. ’ ’

Make it lighter: 3/3

Experimental hardware acceleration
Different flavour -fsanitize=hwaddress
Tagged memory support
AArch64 is supported
mobile devices and mac CPUs
server ARM CPUs
Intel is ongoing:

Clang 14 (2022) / gcc 13 (2025)

Intel LAM (Linear Address __M?S_ki_ng_) — Arrow Lake (2023)

Memory Tagging and how it
improves C/C++ memory safety
arXiv:1802.09517

GWP-ASan: Sampling-Based
Detection of Memory-Safety

Bugs in Production
arXiv:2311.09394

Bloomberg

Engineering

1L
Fo o o o

https://arxiv.org/abs/2311.09394
https://arxiv.org/abs/1802.09517
https://arxiv.org/abs/1802.09517

Leak Sanitizer

A part of address sanitizer

Enabled for free:
Address sanitizer already intercepts malloc / free
It's enough to track memory

Reports leaks on program exit

Performance considerations:
Leak check phase is expensive (pause threads, flood fill pointers)
Use leak sanitizer without address sanitizer (better performance before leak
check)

Compile-time flag Bloomberg

Leak Sanitizer: Problems

Opinionated checks

Enabled depending on platform — ASAN OPTIONS=detect leaks="1

Specific program design
Allocate a lot of things in main()
Don’t care about deallocating on exit — not a leak

Typically, a loop — incoming HTTP/RPC requests, Apache Kafka messages
|deally measure leaks for a processing iteration

Bloomberg
Enginr:e ring

Leak Sanitizer: Fine-grained checks

Tailored leak measurement

Internal LLVVM function Accumulated leaks, not differential
__lIsan_do _recoverable leak check

==3977877==ERROR: LeakSanitizer: detected memory leaks

extern "C" { int __Ilsan_do_recoverable_leak_check(); }

Direct leak of 1 byte(s) in 1 object(s) allocated from:
void main4 ()

{ ==3977877==ERROR: LeakSanitizer: detected memory leaks
for (int counter = 0; counter < 4; ++counter)
{ Direct leak of 3 byte(s) in 2 object(s) allocated from:
process(counter) ;
if (__Ilsan_do_recoverable_leak_check())
{
std: :cout << "Leaks detected\n";
b
std: :this_thread: :sleep_for(Bloomberg
std::chrono: :seconds(5)) ;

Beyond Leak Sanitizer: jemalloc

Drop-in runtime replacement for malloc

Automatic mode:
On exit, similar to leak-sanitizer: export MALLOC CONF="prof:true”

Manual continuous mode:
Time- or size-based report: export MALLOC CONF="prof:true,Ig_prof interval:5”

Manual differential mode:
Compile and link with jemalloc support: #include <jemalloc/jemalloc.h>
Invoke mallctl("prof.active”, ...) to start leak tracking
Invoke mallctl("prof.dump”, ...) to compare and report a difference
Check profile file with a jeprof utility

4

Beyond Leak Sanitizer

jemalloc Postmortem

Published Jun 12, 2025

The jemalloc memory allocator was first conceived in early 2004, and has been in public use for about 20 years now.
Thanks to the nature of open source software licensing, jemalloc will remain publicly available indefinitely. But active

upstream development has come to an end. This post briefly describes jemalloc’s development phases, each with some
success/failure highlights, followed by some retrospective commentary.

Google’s tcmalloc
More or less equivalent

Both not compatible with sanitizers Bloomberg

https://jasone.github.io/2025/06/12/jemalloc-postmortem
https://jasone.github.io/2025/06/12/jemalloc-postmortem
https://jasone.github.io/2025/06/12/jemalloc-postmortem

Platform support

Address sanitizer
¥ Linux, macOS on x86 / x86 64

Leak sanitizer
¥ clang on Linux x86_64
Apple clang on macOS x86_ 64
¥ LLVM clang on macOS x86_64
macOS AArch64

Thread sanitizer
¥ Linux, macOS on x86_64

Undefined behaviour sanitizer
¥ Everywhere

@ Windows — MSVC, cIang/I_/ISV__C_,__minigw?} s o

Bloomberg
Enginr:e ring

Address sanitizer: False positives

Very rarely
Mixing instrumented and non-instrumented code
Totally fine with address sanitizer (NOT thread sanitizer)

Typical example: container overflow
Source code of a container is not instrumented — it belongs to libc++ library
Inline code is instrumented — it is compiled in application
Mitigation from app-side: ASAN_ OPTIONS=detect container_overflow=0
Mitigation from compiler: sanitizer annotate contiguous container
annotation on std containers

Bloomberg
Enginr:e ring

Address sanitizer: False negatives

False negatives for unaligned access
Unaligned access is bad, however

Hardened code is not sanitised
Debian and Gentoo hardening with -D FORTIFY SOURCE

Bloomberg
Enginr:e ring

Sanitizers: PIC and PIE

Source of confusion
Only thread and memory sanitizers require PIC/PIE

Symptoms during compile-time:
g++: error:. -fsanitize=thread linking must be done with -pie or -shared

ld: relocation R_X86_64_32S cannot be used when making a shared object;
recompile with -fPIC

Symptoms during run-time:
==70588==ReserveShadowMemoryRange failed while trying to map
Oxdfffeo01000 bytes. Perhaps you're using ulimit -v

Bloomberg

Sanitizers: PIC and PIE

PIC — for shared libraries to be loaded at arbitrary address

PIE — for executables to support ASLR (load at random address)
Code is built and linked as relocatable via offsets

For shared libraries, set -fPIC compilation flag (not -fPIE)

For executables, set -fPIC or -fPIE compilation flag and -pie linker flag

% readelf -h app-pie
app-pie: DYN (Position-Independent Executable file)

% readelf -h app-nonpie
app-nonpie: EXEC (Executable file) Bloomberg

Sanitizers: common problems

Memory limits are imposed via PAM (reserve terabytes of virtual, memory)
SELinux with mmap restrictions (used for shadow)

Memory overcommit is disabled (vm.overcommit_memory must be 0 or 1)
Another allocator (tcmalloc, jemalloc)

ASLR is disabled (check kernel.randomize va space)

Non-PIE binary

A non-PIC library in dependencies Bloomberg

Enginr:e ring

Sanitizer runtime

Where do new symbols come from? % nm libfoo.a | grep san

__asan_handle_no_return
__asan_init
__asan_option_detect_stack_use_after_return
__asan_register_globals
__asan_report_loadT
__asan_report_load4
__asan_report_load8
__asan_report_storeT
__asan_report_store4
__asan_report_store8
__asan_stack_malloc_0
__asan_stack_malloc_2
__asan_stack_malloc_3
__asan_unregister_globals

Runtime provides
- Memory load/store functions
- Reporting functions
- Interceptors

LLVM and GCC library implementations

Mix-and-match is prohibited

cCCCcCcCcCcCccccccccc

__asan_version_mismatch_check_v8

Bloomberg
Enginr:e ring

Sanitizer runtime per platform

Linux Clang — static by default
Linux GCC — shared by default

% Idd ./build/app/app | grep san
libasan.so.8 => /lib/x86_64-linux-gnu/libasan.so.8 (0x00007fa178400000)

To link sanitizer statically, specify linker flag -static-libasan

macOS — only shared sanitizer

Another mechanism rather than LD PRELOAD

Bloomberg

A list of interceptors in __DATA section of a binary

Case of Bloomberg

Linux, GCC
Use of CMake toolchains
Statically linked sanitiser -static-libasan

Huge support from tooling and CI
Different CMake toolchains for prod and instrumented builds
Build internals are isolated
-DCMAKE_TOOLCHAIN_FILE=/opt/BBlInstrumentationToolchain64.cmake
-DBB _INSTRUMENTATION_ TYPES='ASAN;UBSAN’

Unit tests under sanitisers Bloomberg

Engineering

Integration tests under sanitisers: o T

e,

Memory Sanitizer

Do not confuse with address sanitizer

Flags: -fsanitize=memory -fsanitize-memory-track-origins=2

Only one class of errors: Compare: address sanitizer
Reads from uninitialized memory Detects illegal reads only
int* a = new int[10]; int* a = new int[10];
a[5] = @; a[5] = @;
// Uninitialized read (MSan) // Illegal read (ASan)
printf("%d\n", al[1]); printf("%d\n", al[20]);

WARNING: MemorySanitizer: . =~ Bloomberg
use—of—uninitializedfya;geggﬁgf}?Qigﬁﬁad_m. | ineer

e,

Memory Sanitizer: Costs

Much more expensive in runtime (2-3x slower)

Stops at first offence

Requires rebuild of all dependencies:
Practically can run
False positives when partially instrumented
Suppressions could help

Requires relocatable binary -fPIE

\[o] r=We] g=Tei{[or=| Weiglo]{ef=!

Use ASan instead

Bloomberg
Enginr:e ring

Thread Sanitizer

It is hard to make a correct C++ multi-threaded program

Event harder to find bugs

Is it a feasible problem in C++? .

Lack of language and library primitives CppOnSea 2025

_ _ David Rowland
Fearless Concurrency $¢ is not achievable What can C++ learn

. about thread safety from
Heuristics to detect races and concurrency problems other languages?

Bloomberg
Enginr:e ring

Thread Sanitizer: Heuristics

Best effort

Simple race

Race on a complex object

Notification

Publishing objects without synchronization
Initializing objects without synchronization
Reader Lock during a write

Race on bit field

Double-checked locking

Race during destruction

Data race on vptr

Data race on vptr during construction
Race on free

Race during exit

Race on a mutex

Race on a file descriptor

enum ReportType {

ReportTypeRace,
ReportTypeVptrRace,
ReportTypeUseAfterFree,
ReportTypeVptrUseAfterFree,
ReportTypeExternalRace,
ReportTypeThreadLeak,
ReportTypeMutexDestroylLocked,
ReportTypeMutexDoublelLock,
ReportTypeMutexInvalidAccess,
ReportTypeMutexBadUnlock,
ReportTypeMutexBadReadLock,
ReportTypeMutexBadReadUnlock,
ReportTypeSignalUnsafe,
ReportTypeErrnoInSignal,
ReportTypeDeadlock,
ReportTypeMutexHeldWrongContext

Bloomberg
Enginr:e ring

Thread Sanitizer: Example 1

Let's race void main() {

static int state;

- " : std::jthread t7([] { state
Simple race condition on a variable std: jthread t2([] { state

|
N
-~
N

Continues execution on race

WARNING: ThreadSanitizer: data race (pid=1774829)
Write of size 4 at 0x560e4b267b2c by thread T2:

#0 main5()::$_1::operator()() const app/main.cpp:10:30 (app+0xe8638)
Previous write of size 4 at 0x560e4b267b2c by thread T1:

#0 main5()::$_0::operator()() const app/main.cpp:9:30 (app+0xe8078)

Location is global 'main5()::state' of size 4 at 0x560e4b267b2c (app+0x1518b2c)
Thread T2 (tid=1774832, running) created by main thread at:

Thread T1 (tid=1774831, finished) created by main thread at:
Bloomberg

Engineering

ST =—=—=—==Cc . : o il n Tz o o

SUMMARY ThreadSanitizer: data race. app/mam cpp 10 30 in, ma|n5() $ 1: operator()() const

Thread Sanitizer: example 2

Race condition on a variable

Changes execution flow

SUMMARY : ThreadSanitizer: data race
app/main.cpp:27:12
in
main6()::S_1::operator()() const

__attribute__((__noinline__)) void blackbox() {}

void main6()

bool done = false;

std::jthread t7([&done] {
while (!done) blackbox();

std::cout << "Unreachable” << std::endl;

1),
std: :jthread t2([&done] {

blackbox() ;

done = true;

1)

Engineering]

Thread Sanitizer: costs

% nm libclang_rt.tsan-x86_64.a | \
grep ' T ___interceptor_" | wec -1
576

Much more expensive in runtime (10x slower)

Typical slowdown: 10x ___linterceptor_pthread_mutex_lock

___interceptor_pthread_join

Memory overhead: 5-10x (more than ASan) ---interceptor_popen
Requires relocatable binary -fPIE

Same approach to exclude code

A lot of

. - __ap ifs i |
libstdc++ cannot be instrumented - 80, it's intercepted! Bloomberg

Case study

We know how they work

How to use them in the real world:
Cross-boundary interactions
Static vs. shared libraries
False positives and negatives

Cross-language support

g4

UNDETHREA [RIMG =Y

FINED

*L‘s - 'f"—, — .

- ““ x
MEM ADDRESS

saN SAN wa' SA“\

SAN

‘\~/“
T

Bloomberg

Sanitizers in complex projects

e R R e

Static linking is not supported at all

¥ Shared libc++ or libstdc++
libc++ cannot be not instrumented

Use interceptor functions instead (sanitizer runtime)

Bloomberg

Be

Address sanitizers in complex projects: Static libraries

App ——) Static library

Instrument both app and library

¥ Perfect case

Allocations from library are also tracked
Allocations can cross a boundary

No false positives or negatives

libc++ doesn’t need to be ingtrum_eht_éd-5";__? it

—

Bloomberg
Enginr:e ring

Address sanitizers in complex projects: Static libraries

Only a library is instrumented, but not an application

Doesn’t work without build changes
f.cpp:(.text.asan.module_ctor[asan.module ctor]+0x5): undefined reference to = asan_init'

Executable must link to sanitizer library

Provide a linker flag -fsanitize=address

¥ Fine since you control linking
. Bloomberg

Engineering

e,

Address sanitizers in complex projects: Static libraries

A False negatives ADP

Library

non-instrumented code : instrumented code

Cross-boundary situation:

.......... » Shadow memory

Memory allocated in the library § Very acess
: Write valid memory — ok —l

Make a bad access in the app | [Wrtefauty momory ~cHECK. |

|t |Sn’t ﬂagged by the San|t|zer std::vector<uint32_t> getData() { return {0, 1, 2, 3}; }

Read valid memory — ok

Read faulty memory — ok

Address sanitizers in complex projects: Static libraries

Only executable is instrumented
Works fine
Allocations from executable are tracked

A Allocations from the library are not tracked

Bloomberg

Address sanitizers in complex projects: Dynamic libraries

libc++

App ——» Dynamic library ——»

Instrument both app and library
¥ Perfect case

No false positives

No false negatives

Note: link with shared ASan runtime
Bloomberg
Enginn‘:ering

Address sanitizers in complex projects: Dynamic libraries

Interesting case — only the library is instrumented

1. Originally executable wasn’t aware of sanitizers and linking libasan runtime

2. Rebuild library with ASan

3. Got this:
/build/app/app: symbol lookup error: /build/libfoo/libfoo.so:

undefined symbol: __asan_option_detect_stack_use_after_return

Solution: runtime must be preloaded:
LD_PRELOAD=/lib/x86_64-linux-gnu/libasan.so.8 ./app Bloomberg

Engineering

Thread sanitizers in complex projects

App e 2 DYNamic library e - libc++

| gy

pthread_lock_%*
atomic_*

Only executable is instrumented syscall

Bad behaviour in library is not checked — expected A

Good behaviour in a library is checked — no false positives ¥
Would expect false positive since an app isn’'t aware

All pthread lock * dynamic calls are intercepted by TSan runtime

But only if itis intercepted... = Bloomberg

Thread sanitizers in complex projects: Example 1

Let’s crash with spinlocks!

// App (instrumented) // Shared library (non-instrumented)
int state = 0; static std::atomic<bool> spinlock{false};
std::jthread t7([&] { void acquire_lock() A
acquire_lock(); //TSAN: normal function while (spinlock.exchange(
++state; //TSAN: read from T1 true, std::memory_order_acquire))
release_lock() ; }
1)
std::jthread t2([&] { void release_lock() A
acquire_lock(); //TSAN: nothing special spinlock.store(false,
++state; //TSAN: read from T1 std: :memory_order_release) ;
release_lock() ;)
1)

A False positive (i.e., error is reported)
But TSan could analyse acquire _lock / release_lock if instrumentation enabled

?'j,' < 5

.
)

Thread sanitizers in complex projects: Example 2

Let’'s crash with system mutex!

// App (instrumented) // Shared library (non-instrumented)

int state = 6; static pthread_mutex_t mutex =

std: :jthread t1([&] { PTHREAD_MUTEX_INITIALIZER:
acquire_lock(); //TSAN: known
trstate, . JOUISENE (R 1 // pthread_mutex_lock is intercepted
release_lock() ;

+) s void acquire_lock() { pthread_mutex_lock(&mutex); }

std::jthread t2([&] {
acquire_lock(); //TSAN: known

++state; //TSAN: read T1
release_lock(); void release_lock() { pthread_mutex_unlock(&mutex); }}

})s

// pthread_mutex_lock is intercepted

¥ No false positive (i.e., no errors reported)
| Bloomberg

Function pth read_mutex_loc_kl |._$_.__.|___._:.r)_:.t__§:|_’_c_epte_l(j:._,q____p__.__:r_qnt|me

Be

Address sanitizers in cross-language projects

Integrating libraries in different languages
How does it work on cross-language barriers?

Deal with RIIR $2

Bloomberg
Enginr:e ring

Address sanitizers in Rust/C++: pure Rust app

Rust can also crash

In unsafe

So could an unsafe Rust dependency

Sanitizers can help

// RUSTFLAGS="-Z sanitizer=address" cargo run -v

fn main() {
let mut v = vec!/[0O, 1, 2, 3];
let mut ptr: *mut i32 = &mut v[O] as *mut 1i32;

ptr = ptr.wrappilgeadd(10) ;
let ub: i32 *ptr }; Bloomberg

Address sanitizers in cross-language projects

Rust App Dynamic library z Static asan runtime

Static cxx bridge e

Dynamic C++ library — instrumented
Client application written in Rust — instrumented
Autogenerated bridge — instrumented

Must build Rust a ith sanitizers
u ul u pPp Wi itiz Bloomberg

All components use static runt|me e O

Address sanitizers in Rust/C++: bridge

Shared C++ library libfoo.so is linked to static ASan runtime

Autogenerated
. . . bridge with glue
Using cxx crate to link to C++ library foo J J
types
#[cxx::bridge] Static Iibrary
mod ffi { Cxxbridge.a
unsafe extern "C++" {
// int processString(const std::string& param, size_t len);
include!("/usr/local/include/foo.h");
fn processString(param: &CxxString, len: usize) -> i32;
}o)
Bloomberg

Address sanitizers in Rust/C++: bridge

Call C++ function from Rust code

Autogenerated
bridge with glue
Pass memory address from stack J J
types
#[cxx::bridge] Static Iibrary
mod £fi { cxxbridge.a
unsafe extern "C++" {
// int processString(const std::string& param, size_t len);
include!("/usr/local/include/foo.h");
fn processString(param: &CxxString, len: usize) -> i32;
}o)
cxx::let_cxx_string! (param = "testingtests");
71 ° : Bloomberg
let result = ffi::processString(¶m, 100);

Engineering]

Address sanitizers in Rust/C++: example

Stack overflow is caught

==3490050==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7be89e9de126 ..
READ of size 1 at 9x7beB9e9de120 thread TO

#0 Ox7feBabcall5c (/usr/local/lib/libfoo.so+0x515¢c)
#1 0x556536122ccf (rustapp/target/x86_64-unknown-1linux-gnu/debug/rustapp+0x187iccf)

Nightly compiler
Unstable sanitizer feature

Bloomberg

?'j,' < 5

Address sanitizers in Rust/C++: Build 1/2

Build and integration are tricky
cxX build is done via custom build.rs script
Instrument bridge (flag)

Instrument app code (RUSTFLAGS)

Cargo.toml
[package]

name = "rustapp”
edition = "2024"

[dependencies]
cxx = "1.8"

[build-dependencies]
cxx-build = "1.0"

Invocation: // RUSTFLAGS="-Z sanitizer=address" cargo build --target x86_64-unknown-1linux-gnu

fn main()

cxx_build: :bridge("src/main.rs").flag("-fsanitize=address").compile("cxxbridge");

Address sanitizers in Rust/C++: Build 2/2

Only link existing ASan static runtime (same as C++ library)
Do not tell linker -fsanitize=address

// build.rs
fn main() {
cxx_build: :bridge("src/main.rs").flag("-fsanitize=address").compile("cxxbridge");

println!("cargo:rustc-link-1lib=fo00");
println!("cargo:rustc-link-1lib=asan");

// NOT: println!(cargo:rustc-link-arg=-fsanitize=address”);

}

Rust own ASan librustc-nightly rt.asan.a runtime is not compatible with LLVM:
==82818==Your application is linkedagainst incompatible ASan runtimes
. Bloomberg

Engineering

e,

Address sanitizers in Rust/C++: summary

Rust is built upon LLVM

Reuse LLVM sanitizer runtime and LLVM compiler back-end

Different binary of runtime (GCC vs LLVM vs Rust)

Same sanitizers:
Heap
Stack

L eaks

Cross-language memory tracking is real

Bloomberg
Enginr:e ring

Use

Ok, we are convinced to use sanitizers

But how?

And where?

-

- D
uerE THREA’J g A El[
c|NES WA
.SA,\/ SAM SF‘&“J

= @ __/LQ ‘ L = =

Using sanitizers: Unit tests

Run unit tests
Mandatory

Good if code coverage is enough
Code paths are covered

Good if data coverage is enough
It is rare
Bad for data-driven applications

Bloomberg
Enginr:e ring

Using sanitizers: A problem with coverage

Coverage is not only for the code!

Code coverage 78%

Data coverage 78%

function 1

Domain space

Case for datum 1

datum 2

datum 3

function 2

function 3

Bloomberg

Engineering

Using sanitizers: Integration tests

Run integration tests
More code paths exposed to sanitizers
Closer to real scenarios

Measure coverage for integration tests

Bloomberg
Enginr:e ring

Using sanitizers: Fuzzing LLVM libfuzzer

Coverage-quided runs of black-box program
with mutating input data Feeds mutating data

Provide an entrypoint ~ ~—
Akin to property-based testing (white box)

. Good scenarios — structured input, extern "C" int .LLVMFuzzerTestOr.)eInput('
tateless: : const uint8_t *Data, size_t Size)
S .

Library ﬁgréiirr:i’gi.zedFunctonsOnInput(Data, Size) ;

Database \ |

Codec

A Bad scenarios — hard to isolate state:
HTTP or RPC server
Event-based systems PRI L
Raw network monitoring = = o 0 T

Bloomberg
Enginr:e ring

Using sanitizers: Production

s it safe?

Most sanitizers are stable, some are beta
Not intended to be production ready
Reduce problem surface — minimal runtime

Safety hierarchy (higher to lower):
- Undefined

Address

Leak

Thread

Memory

Bloomberg
Enginr:e ring

Using sanitizers: Production

Fail or continue? Recovery strategies
Address sanitizer

— Compile flag -fsanitize-recover=all

— Runtime ASAN_OPTIONS=halt_on_error=0
Undefined sanitizer

— Just reports by default

— Trap and continue -fsanitize-undefined-trap-on-error
Thread sanitizer

— By default, just reports
Leak sanitizer

— On exit

— Can enable periodic reports (see above)

Bloomberg

Using sanitizers: Production

Blue/green or canary deployment
Evaluate the risks
Real environment
Part of user traffic goes to test instance
Mirroring data traffic — "T
Safe A
Must be fully isolated (mock or deployment)
Output reconciliation

Production

Sanitized build

Production build

Bloomberg

Wrap-up
Sanitizers are powerful tools

Available for major compilers and platforms

Open source implementations , = SS
: p e DETHRE AmMg &A»AWRE
UN W/*p\ﬁ SAN

Complex interaction at component boundaries FS'XN} SAN SAM SA \

Tricky integration with build system — = /«,{Q & - s. ===

e

Better to run closer to the real system

Bloomberg

Engineering

=

Thank you!

biaquoo|g

-
(@)
=
-
(D
(D
l—‘
-
-
(@

RIS IR o Tl Eodial
<" TechAtBloomberg.com

¢ © 2025 Bloomberg Finance L.P. All rights reserved.

	Slide 1: Sanitize for your Sanity: Sanitizers tools for Modern C++
	Slide 2: Intro
	Slide 3: Outline
	Slide 4: Approaches to ensure safety
	Slide 5: Approaches to ensure safety
	Slide 6: What are sanitizers?
	Slide 7: Build
	Slide 8: Build system integration: Example
	Slide 9: Build system integration: Library example
	Slide 10: Build system integration: Ways to enable
	Slide 11: Build system integration: CMake toolchain
	Slide 12: Package manager integration: Conan
	Slide 13: Package manager integration: Conan
	Slide 14: Compiler flags
	Slide 15: Build
	Slide 16: Sanitize
	Slide 17: Address sanitizers
	Slide 18: How do address sanitizers work?
	Slide 19: Let’s finally crash something
	Slide 20: How does it work: Shadow memory
	Slide 21: How does it work: Accessing
	Slide 22: Two kinds of memory
	Slide 23: Let’s crash the stack now
	Slide 24: Shadow memory: Stack allocations
	Slide 25: How does it work: Marking memory
	Slide 26: Address sanitizer: Costs
	Slide 27: Make it lighter: 1/3
	Slide 28: Make it lighter: 2/3
	Slide 29: Make it lighter: 3/3
	Slide 30: Leak Sanitizer
	Slide 31: Leak Sanitizer: Problems
	Slide 32: Leak Sanitizer: Fine-grained checks
	Slide 33: Beyond Leak Sanitizer: jemalloc
	Slide 34: Beyond Leak Sanitizer
	Slide 35: Platform support
	Slide 36: Address sanitizer: False positives
	Slide 37: Address sanitizer: False negatives
	Slide 38: Sanitizers: PIC and PIE
	Slide 39: Sanitizers: PIC and PIE
	Slide 40: Sanitizers: common problems
	Slide 41: Sanitizer runtime
	Slide 42: Sanitizer runtime per platform
	Slide 43: Case of Bloomberg
	Slide 44: Memory Sanitizer
	Slide 45: Memory Sanitizer: Costs
	Slide 46: Thread Sanitizer
	Slide 47: Thread Sanitizer: Heuristics
	Slide 48: Thread Sanitizer: Example 1
	Slide 49: Thread Sanitizer: example 2
	Slide 50: Thread Sanitizer: costs
	Slide 51: Case study
	Slide 52: Sanitizers in complex projects
	Slide 53: Address sanitizers in complex projects: Static libraries
	Slide 54: Address sanitizers in complex projects: Static libraries
	Slide 55: Address sanitizers in complex projects: Static libraries
	Slide 56: Address sanitizers in complex projects: Static libraries
	Slide 57: Address sanitizers in complex projects: Dynamic libraries
	Slide 58: Address sanitizers in complex projects: Dynamic libraries
	Slide 59: Thread sanitizers in complex projects
	Slide 60: Thread sanitizers in complex projects: Example 1
	Slide 61: Thread sanitizers in complex projects: Example 2
	Slide 62: Address sanitizers in cross-language projects
	Slide 63: Address sanitizers in Rust/C++: pure Rust app
	Slide 64: Address sanitizers in cross-language projects
	Slide 65: Address sanitizers in Rust/C++: bridge
	Slide 66: Address sanitizers in Rust/C++: bridge
	Slide 67: Address sanitizers in Rust/C++: example
	Slide 68: Address sanitizers in Rust/C++: Build 1/2
	Slide 69: Address sanitizers in Rust/C++: Build 2/2
	Slide 70: Address sanitizers in Rust/C++: summary
	Slide 71: Use
	Slide 72: Using sanitizers: Unit tests
	Slide 73: Using sanitizers: A problem with coverage
	Slide 74: Using sanitizers: Integration tests
	Slide 75: Using sanitizers: Fuzzing
	Slide 76: Using sanitizers: Production
	Slide 77: Using sanitizers: Production
	Slide 78: Using sanitizers: Production
	Slide 79: Wrap-up
	Slide 80: Thank you!

