)‘ ;’ g,.

-~
.

- ' - o
So vl £ T
B et
‘ w!ﬁ‘“(
‘m‘iﬂm r_mn)-
- o~

»
- . M',}-

&, '..

WHY USE COROUTINES FOR ASYNCHRONOUS APPLICATIONS?
Goal of this presentation

= Using a variety of examples, ranging from simple to more complex,

compare 3 programming styles

» synchronous (using a synchronous 1/O API)

« asynchronous (using an asynchronous I/O API)
 coroutines (using the same asynchronous 1/O API)

and demonstrate that coroutines allow writing applications that
« exhibit asynchronous behaviour
* using a synchronous programming style

combining the advantages of both styles, i.e.,
* the easy-to-write, read and maintain synchronous style
+ with the efficient non-blocking execution of the asynchronous style

without introducing any major disadvantages (apart from an inevitable learning curve).

WHY USE COROUTINES FOR ASYNCHRONOUS APPLICATIONS?

Some quotes

Lewis Baker in https://lewissbaker.qithub.io/2020/05/11/understanding symmetric transfer:

“The Coroutines TS provided a wonderful way to write asynchronous code as if you were writing synchronous
code. You just need to sprinkle co_await at appropriate points and the compiler takes care of suspending the
coroutine, preserving state across suspend-points and resuming execution of the coroutine later when the
operation completes.”

Max Arshinov in https://dev.to/maxarshinov/a-brief-history-of-asyncawait-264:

“The async/await pattern is a syntactic feature of many programming languages that allows an asynchronous,
non-blocking function to be structured similarly to an ordinary synchronous function. It is semantically related to
the concept of a coroutine and is often implemented using similar techniques.”

https://lewissbaker.github.io/2020/05/11/understanding_symmetric_transfer
https://dev.to/maxarshinov/a-brief-history-of-asyncawait-264j
https://dev.to/maxarshinov/a-brief-history-of-asyncawait-264j
https://dev.to/maxarshinov/a-brief-history-of-asyncawait-264j
https://dev.to/maxarshinov/a-brief-history-of-asyncawait-264j
https://dev.to/maxarshinov/a-brief-history-of-asyncawait-264j
https://dev.to/maxarshinov/a-brief-history-of-asyncawait-264j
https://dev.to/maxarshinov/a-brief-history-of-asyncawait-264j
https://dev.to/maxarshinov/a-brief-history-of-asyncawait-264j
https://dev.to/maxarshinov/a-brief-history-of-asyncawait-264j
https://dev.to/maxarshinov/a-brief-history-of-asyncawait-264j
https://dev.to/maxarshinov/a-brief-history-of-asyncawait-264j

WHY USE COROUTINES FOR ASYNCHRONOUS APPLICATIONS?

Appetizer example: synchronous versus coroutine

int functionl (int inl, int in2, int testval) async_task<int> coroutinel(int inl, int in2, int testval)
{ {
int outl = -1, out2 = -1; int outl = -1, out2 = -1;
int retl = remoteObjl.opl(inl, in2, outl, out2); int retl = co_await remoteObjlco.opl (inl, in2, outl, out2);
// 1 Do stuff // 1 Do stuff
if (retl == testval) { if (retl == testval) {
int out3 = -1; int out3d = -1;
int ret2 = remoteObj2.o0op2(inl, in2, out3); int ret2 = co_await remoteObj2co.op2(inl, in2, out3);
// 2 Do stuff // 2 Do stuff
return ret2; co_return ret2;
} }
else { else {
int outd4d = -1, outb = -1; int outd4d = -1, outb = -1;
int ret3 = remoteObj3.op3(inl, out4d, outhd); int ret3 = co_await remoteObj3co.op3(inl, out4, outbd);
// 3 Do stuff // 3 Do stuff
return ret3; co_return ret3;

In yellow: The synchronous and coroutine examples are syntactically very close to each other. The asynchronous
example is more complex, see next slide.

In blue: The synchronous variant calls synchronous operations, the coroutine variant uses asynchronous
operations.

4

WHY USE COROUTINES FOR ASYNCHRONOUS APPLICATIONS?

void functionla(functionl ctxt t* ctxt, int outl, int out2,

Appetizer example: asynchronous int retl, int& ret)
{
struct functionl ctxt t // 1lb Do stuff that needs the result of the RMI
{ o - if (retl == ctxt->testval) {
int inl; remoteObj2.sendc op2(ctxt->inl, ctxt->in2,
int in2;: [this, &ret] (int outl, int retl) {
int testval; this->functionlb(outl, retl, ret);
}i b
// 2a Do stuff that doesn't need the result of the RMI
void functionl (int inl, int in2, int testval, int& ret) }
{ else {
functionl ctxt t* ctxt = new functionl ctxt t{inl, in2, remoteObj3.sendc op3 (ctxt->inl,
testval}; [this, &ret] (int outl, int out2, int retl) {
remoteObjl.sendc opl(inl, in2, this->functionlc(outl, out2, retl, ret);
[this, ctxt, &ret](int outl, int out2, int retl) { b
this->functionla (ctxt, outl, out2, retl, ret); // 3a Do stuff that doesn't need the result of the RMI
b }
// la Do stuff that doesn't need the result of the RMI delete ctxt;
} }
void functionlb(int out3, int ret2, int& ret)
{
. . . // 2b Do stuff that needs the result of the RMI
Can be implemented in different ways. = rets:
ret ret2;
See further in this presentation. }

void functionlc(int out4, int outb, int ret3, int& ret)

The behavior (control flow) of the coroutine example
and the asynchronous example iS Vew Similar- // 3b Do stuff that needs the result of the RMI

ret = ret3;

BIOGRAPHY

Johan Vanslembrouck

= | started my professional career on 1 October 1984 at Bell Telephone Manufacturing Company (BTMC) in
Antwerp, Belgium

 BTMC (part of ITT until 1986) became Alcatel Bell (Telephone), then Alcatel-Lucent, and is now Nokia.
= | became a consultant for Altran-Europe on 1 February 1999
 Altran became Capgemini Engineering in April 2022.

| worked for clients in various sectors: telecommunication, defence, banking (electronic payment terminals), aeronautics,
industrial automation and pharmaceutics. 16 different clients in total, not including company renaming.

= | have been studying and using C++ coroutines since June 2019, in combination with various asynchronous
communication frameworks such as Boost ASIO, Qt5, gRPC, TAO, ROS2, Win32 overlapped 1/0O.

« Coroutines are fascinating and | did not want to become obsolete before my retirement date.
 Still, I haven’t had the chance to use coroutines in client projects (although | did see some opportunities).

@

INTRODUCTION

Introductory notes

= This presentation is an evolution of a presentation | gave at the Belgian C++ Users Group on 15 January 2025
PresentationBelgianC++UsersGroup (68 slides), which is an evolution of presentations | gave at 3 client
companies, which were evolutions of my very first external presentation on coroutines for Meeting C++ in 2022
https://meetingcpp.com/mcpp/slides/2022/Corolib-DistributedProgrammingWithC++Coroutines1807.pdf (74
slides).

= |n this presentation | have added slides referring to software | have encountered during my career and that
could have benefited from the use of (C++) coroutines... if only coroutines had been available at that time.

= Because of the large number of slides (130), the focus in this presentation will be more on these real-world case
studies and less on detailed technical aspects.

= The original title of the presentation was “Why use coroutines for asynchronous programming?”
« The term “asynchronous programming” is more often used.

» But the result of asynchronous programming is an asynchronous program or application.
| will use both terms in the rest of this presentation.

WhyUseCoroutinesForAsynchronousApplications.pptx
WhyUseCoroutinesForAsynchronousApplications.pptx
WhyUseCoroutinesForAsynchronousApplications.pptx
https://meetingcpp.com/mcpp/slides/2022/Corolib-DistributedProgrammingWithC++Coroutines1807.pdf
https://meetingcpp.com/mcpp/slides/2022/Corolib-DistributedProgrammingWithC++Coroutines1807.pdf
https://meetingcpp.com/mcpp/slides/2022/Corolib-DistributedProgrammingWithC++Coroutines1807.pdf

AGENDA

Brief introduction to C++ coroutines (14 slides)

Brief introduction to (a)synchronous programming (4 slides)
Why use coroutines for asynchronous programming?
When not to use coroutines? (3 slides)

Summary and conclusions (4 slides)

Appendix: brief introduction to corolib (4 slides)

2l

AGENDA

Brief introduction to C++ coroutines (14 slides)
Brief introduction to (a)synchronous programming
Why use coroutines for asynchronous programming?
When not to use coroutines?

Summary and conclusions

Appendix: brief introduction to corolib

2l

INTRODUCTION TO C++ COROUTINES

What is a coroutine?

A coroutine is a generalized routine that in addition to the
traditional subroutine operations call and return, supports
suspend and resume operations.

= Name coined by Melvin Conway in 1958, first publication in 1963.

= Fortran code on the right comes from
https://web.chem.ox.ac.uk/fortran/subprograms.html

= Early programming languages, such as Fortran, used the term
“subroutine” instead of “procedure” or “function.”

= Therefore “coroutine” seems to be a natural name for a more general
“subroutine.”

= In Fortran CALL and RETURN are explicit “operation” names.

= Processors only support call and return operations. Suspend and
resume are implemented with return and call, respectively, at the
processor level.

PROGRAM SUBDEM

REAL A,B,C,SUM,SUMSQ

CALL INPUT(+ A,B,C)

CALL CALC(A,B,C,SUM,SLMSQ)
CALL OUTPUT(SUM,SUMSQ)

EMD

SUBROUTINE INPUT(X, ¥, Z)

REAL X,Y,Z

PRINT *,'ENTER THREE NUMBERS => '
READ *,X,Y,Z

RETURN

END

SUBROUTINE CALC(A,B,C, SUM,SUMSQ)
REAL A,B,C,SUM,SUMSQ

SUM =A+B +C

SUMSQ = SUM **2

RETURN

END

SUBROUTINE OUTPUT{SUM,SUMSQ)

REAL sSUM, SUMSQ

PRINT *,'The sum of the numbers you entered are: ',SUM
PRINT *,'And the square of the sum is:",SUMSQ

RETURM

END

https://web.chem.ox.ac.uk/fortran/subprograms.html

INTRODUCTION TO C++ COROUTINES

C++: what is a coroutine, how do you recognize a coroutine?

A C++ function is a coroutine if it contains one or more of the following:

= a co_return statement: returns from a coroutine (just using return is not allowed)

= a co_await expression: (conditionally) suspends evaluation of a coroutine while waiting for a computation to
finish

= a co_yield expression: returns a value from a coroutine back to the caller and suspends the coroutine;
subsequently calling the coroutine again continues its execution.

A coroutine must return an object of a coroutine type (which often has ‘task’ in its name)

= [t cannot return just an int, void, double, etc.

= Consequently, main() cannot be a coroutine (the OS will not resume main() if it has suspended).

The C++20 standard only defines mechanisms (low-level primitives) to define coroutine (types).
= You must implement a coroutine support library (with coroutine types and coroutines) yourself.

= Or find an implementation on the Internet: https://qithub.com/JohanVanslembrouck/corolib

https://github.com/JohanVanslembrouck/corolib

INTRODUCTION TO C++ COROUTINES

Dynamic C: costatements and cofunctions

Dynamic C provides extensions to the C language that support real-world embedded system
development

= Costatements allow cooperative, parallel processes to be simulated in a single program.
= Cofunctions allow cooperative processes to be simulated in a single program.
= Slice Statements allow preemptive processes in a single program.

= User Manual: https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-
microprocessors/

= Originally developed by Rabbit Semiconductor for its microprocessor-based products (Rabbit 2000 and
3000).

= | discovered Dynamic C in 2002 while doing some research on cooperative multi-tasking for a client that had
developed a cooperative scheduler (OS).

= An example of Dynamic C code follows below.

https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/

INTRODUCTION TO C++ COROUTINES

1. Function control flow

Type1 function1(...) Type2 function2(...)

caller Type2 12 = function2(_..); : Type3 13 = function3(_..); , callee

<-5 retum=""

In the rest of the presentation, | will omit the arrows inside the functions and coroutines, as in the picture below.

Type1 function1(...) Type2 function2(...)

callor Type2 12 = function2(_..); _ Type3 13 = function3(...); 3 cally —

<-5 retum=""

Question: how does
function2 know where
to return to?

INTRODUCTION TO C++ COROUTINES

2. Function control flow: virtual functions

class2 02; vibl

= Blue: code

I
b. call

= Dark green: data

= Light green: static data

2c. call

2a._call
Type1 function1(...) Type2 class2::function2(...)

caller Type2 12 = 02->function2() DpER = Mcton) > callee

<-5_ retum~""

Johan Vanslembrouck | Meeting C++ 2025 Public © Capgemini 2025. All rights reserved | 14

INTRODUCTION TO C++ COROUTINES

3. Coroutine control flow with synchronous completion

task coroutine1(...) task coroutine2(...)
1. call

initial_suspend point initial_suspend point

task t = coroutine2(...) . ne3(..), ' callee

caller

co_refum res; co_refum res;
<« --6. suspend final_suspend point final_suspend point

= Synchronous completion

» The leaf coroutine calls only co_return and
behaves as an ordinary function.

= coroutine1 and coroutine2 run to completion.
= Alternative style: T res = co_await coroutineX(...);

= Notice that the coroutines suspend at the final suspend point
(explanation follows below).

INTRODUCTION TO C++ COROUTINES

4. Coroutine control flow with asynchronous completion

task coroutine1(...) task coroutine2(...)

3. call >
"T"4. suspend """ calies
caller
<—11. resume
resumer
...... 16. suspend - -»
= coroutine1 and coroutine2 do no run to completion. = Asynchronous completion
They suspend and resume (are resumed) later. - The leaf coroutine calls co_await on an awaitable

object and will be suspended and then resumed.

INTRODUCTION TO C++ COROUTINES

5. Coroutine control Flow with 2 x asynchronous completion

task coroutine1(...) task coroutine2(...)

Woiemmaens :
? task ta = coroutine3a(__.); 3. call > callee
6. suspend ~--4.suspend """
caller :
ESEEe e Tres =co_awaitt,
< 11. resume
resumer
23. resume
co_retum res; . 8 & 12.call—p callee
...... 24. suspend. - - A SIS
= coroutine3a and coroutine3b do no 5t s il
run to completion. They suspend and !
25. suspend resumer
resume (are resumed) later. :

= 4 possible scenarios: coroutine3a and
coroutine3b can run or not to
completion.

..... 26. suspend---p

INTRODUCTION TO C++ COROUTINES

6. Summary

task coroutine2(...)

3. call
2. call -»
< -

~4 retum

co_retum res;

coroutine2 runs to completion.

task coroutine2(...)

2. call S-caly,
4. suspend™ "~

«€11. resume—

co_retum res;

--16. suspends

coroutine2 does not run to completion.
It suspend and resumes (is resumed) later.

INTRODUCTION TO C++ COROUTINES

Further information

= Sorry, folks. This is all you can get from me as an introduction to C++ coroutines.

= Luckily, there are excellent introductions to C++ coroutines available on the Internet:
« C++20's Coroutines for Beginners - Andreas Fertig - Meeting C++ online
» https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf

= Let's move on to the application domain... (after 4 technical notes slides).

https://www.youtube.com/watch?v=0iiUCuRWz10
https://www.youtube.com/watch?v=0iiUCuRWz10
https://www.youtube.com/watch?v=0iiUCuRWz10
https://www.youtube.com/watch?v=0iiUCuRWz10
https://www.youtube.com/watch?v=0iiUCuRWz10
https://www.youtube.com/watch?v=0iiUCuRWz10
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf
https://andreasfertig.com/talks/dl/afertig-2024-meeting-cpp-online-cpp20s-coroutines-for-beginners.pdf

@

INTRODUCTION TO C++ COROUTINES

Technical note on coroutine start (initial suspend point)

= The scenarios used so far and those that will be used in the rest of the presentation use eager start coroutines.
= Eager start scenarios are easier to understand and illustrate than lazy start scenarios.
= Eager start scenarios allow concentrating more on the control flow inside the body of the coroutine.

= For a more detailed comparison between eager and lazy start coroutines, the reader is referred to the (yet
unpublished) presentation “Be lazy or eager? For once, be eager!”

INTRODUCTION TO C++ COROUTINES

Technical note on coroutine start (initial suspend point): lazy start

L .

'
'
'
'
|

is.await_ready

A 4

call

'
'
'
'
|

is.await_suspend

Using a sequence diagram notation where:

= object names are replaced with function
names

= function names on the arrows are replaced
with any of 4 operations: call, return, suspend
and resume (resume is not in the picture).

INTRODUCTION TO C++ COROUTINES

Technical note on coroutine return (final suspend point)

= The illustrated return flow corresponds to using a final_awaiter type as defined on the left:

struct final awaiter { struct final awaiter {
bool await_ready(] noexcept | bool awalt ready() noexcept {
return false; return false;
void await suspend (coroutine handle<promise type> h) 1 coroutine handle<> await suspend(coroutine handle<promise type> h) noexcept |
if (h.promise().continuation) if (h.promise().continuation)
h.promise() .continuation.resume(); return h.promise () .continuation;
) else
void await resume() noexcept {} return std::noop_coroutine();

void awalt resume() noexcept [}

= With the final _awaiter type defined on the right, each coroutine will be resumed individually from a loop. The
latter definition is used in the “symmetric transfer” approach (see understanding symmetric _transfer).

= This presentation uses the left definition because this control flow corresponds more closely to the asynchronous
examples that we will see later in this presentation.

= async_task.h can be compiled to use either of these final_awaiter definitions (and even a 3™ one).

= Use the final_awaiter type on the right if you use lazy start (to avoid possible stack overflow).

https://lewissbaker.github.io/2020/05/11/understanding_symmetric_transfer
https://github.com/JohanVanslembrouck/corolib/blob/master/include/corolib/async_task.h
https://github.com/JohanVanslembrouck/corolib/blob/master/include/corolib/async_task.h

INTRODUCTION TO C++ COROUTINES

Technical note on coroutine return (Final suspend point)

= With either definition of the final suspend point (see
previous slide), a coroutine will always suspend and never
return.

= The ‘coroutine state object’ must be destroyed when the
‘task object’ holding a coroutine_handle to the ‘coroutine
state object’ goes out of scope: task coroutine2(...)

» The task object’s destructor must call destroy() on the
coroutine_handle.

* No memory leaks!
= Example (see figure on the right)

« If coroutine2 holds a task object t to coroutine3 and coroutine2
has reached the end of its body (after a co_return statement), the
task object goes out of scope and will destroy coroutine3’s
coroutine state object.

« This happens before coroutine2 reaches the final
suspendsection.

T res = co_await t;

co_refumn res; t goes out of scope and willl destroy
the coroutine frrame of coroutine3

AGENDA

Brief introduction to C++ coroutines

Brief introduction to (a)synchronous programming (4 slides)
Why use coroutines for asynchronous programming?

When not to use coroutines?

Summary and conclusions

Appendix: brief introduction to corolib

S i

A)SYNCHRONOUS PROGRAMMING / APPLICATIONS

What are the (a)synchronous applications that are the subject of this presentation?

= Applications using
+ (a)synchronous input/output: (async_)open, (async_)connect, (async)read, (async)write, (async_)close

+ (a)synchronous remote procedure call (RPC) / remote method invocation (RMI): use the operations listed in the previous
point in their implementation

= that are usually long-running
* by entering an event loop from where they process events from the user, environment and other applications in the system
= and that are single-threaded

» unless an aggregate application combines several smaller applications running each of these applications on a different
thread

(A)SYNCHRONOUS PROGRAMMING / APPLICATIONS

Synchronous versus asynchronous programming

= This presentation deals with (potentially) long-running applications with frequent input/output (I/O) to a file
system or to other applications.

= We want our applications to be reactive, i.e., to be able to react quickly to new input from the environment
(e.g., the user) or from other applications (in a distributed system).

= A synchronous application waits (internally) to the response after every I/O request.
» Uses open(), connect(), read(), write(), ... or a remote procedure call (RPC) that looks (much) like a local procedure call.
* Advantage: simple style, easy to implement and maintain.
- Disadvantage: not reactive to new inputs: may be unacceptable for some applications.
= An asynchronous application does not wait (immediately) to the response after an I/O request.
» Uses async_open(), async_connect(), async_read(), async_write, ... and a similar style for RPCs.
» Advantage: reactive to new inputs.
« Disadvantage: sometimes very fragmented programming style, making it more difficult to implement and maintain.
= Can we combine the benefits of both styles while avoiding the disadvantages?
» This presentation will (try to) demonstrate that coroutines are the solution.

@

(A)SYNCHRONOUS PROGRAMMING / APPLICATIONS

How does an asynchronous application await and handle the response to (an) outstanding request(s)?

= Using callbacks

A callback function is passed as argument to the asynchronous request function.
— This callback function is then passed further on to the infrastructure (operating system, communication framework).

 Alternative: a callback function is associated with an API at application startup.
» The callback function will be called
— from a dedicated “completion” thread
— or on the same thread after the application has entered an event loop (see also next slide).
= Using polling functions
» The application calls a function that returns the result (as return value or as output arguments).
 Polling functions can be blocking or non-blocking.
= Using events/messages
« The application enters an event/message loop from where it passes events/messages to the application.
+ At stated above: callback functions can also be called from an event loop.

(A)SYNCHRONOUS PROGRAMMING / APPLICATIONS

Event loops

= Event/message loops can be local or global:
» Local: can occur at many places in the application.
* Global: occurs at a single place in the application.
= Event/message loops can be ...
* never-leaving: once entered, application functions are called from this loop. Typically used in communication frameworks.
- left after each event/message:
— the event/message is passed to the application for further processing, or
— after having processed the event/message in the loop function, e.g., after calling a callback function.
= Notes:
* Local event loops cannot be never-leaving.
» Local event loops may restrict the type of events they handle and postpone all other events to the global event loop.
= Conclusion: many different styles are possible in asynchronous programming.
= Can we return to a single style using coroutines, pushing the differences to a library or framework level?

AGENDA

Brief introduction to C++ coroutines

Brief introduction to (a)synchronous distributed programming
Why use coroutines for asynchronous programming?
When not to use coroutines?

Summary and conclusions

Appendix: brief introduction to corolib

o kw0~

WHY USE COROUTINES?

Introduction

= This section contains several examples ranging from simple to more complex.

= To obtain even more complex examples, it is possible to combine several examples, such as combining a call
stack with sequential RMls.

= The presentation uses the term completion handler:
« A function that completes an asynchronous operation, i.e., contains its response; often implemented as a callback function.
= The examples do not use any real (asynchronous) communication framework
+ ... apart from a few examples using Qt5 and gRPC.
= Characteristics of the simulated communication framework:
* It is single-threaded: the completion handler runs on the same thread as the rest of the application.
« There is an explicit event loop where the application code returns to, and from where the completion handler is run.
= |[f the completion handler runs on a different thread, it is possible to return to the illustrated scenarios by
* introducing an explicit event loop (if not yet present).

* let the completion handler put its response as an event in the event queue, from where it will be picked up in the next
iteration in the event loop.

WHY USE COROUTINES?

Overview: asynchronous I/O and communication examples

Lower level: I/O

= Function/coroutine with (a)synchronous wait, write or read
* (A)synchronous wait
* (A)synchronous write with (a)synchronous read

Upper level: RMI/RPC

= Function with 1 RMI

= Call stack + function with 1 RMI

= Function with 3 sequential RMIs

= Function with 3 “parallel” RMIs

= Function with RMI inside nested loop

= Function with RMI inside nested loop + segmentation

WHY USE COROUTINES?

Overview: other uses of coroutines

= As an alternative to threads

= |In embedded software

= |n other programming languages (Python, C#, ...)

= Completion on another thread

= Local event loop

= CORBA: synchronous — callback — polling — coroutines
= Communicating finite state machines

WHY USE COROUTINES?

Overview: asynchronous I/O and communication examples

Lower level: I/O

= Function/coroutine with (a)synchronous wait, write or read
* (A)synchronous wait (4 slides)
* (A)synchronous write with (a)synchronous read (5 slides)

Upper level: RMI/RPC

= Function with 1 RMI

= Call stack + function with 1 RMI

= Function with 3 sequential RMls

= Function with 3 “parallel” RMIs

= Function with RMI inside nested loop

= Function with RMI inside nested loop + segmentation

WHY USE COROUTINES?

Function/coroutine with (a)synchronous wait (1/4)

synchronous asynchronous coroutine
function1 function1 coroutine
part 1 part 1
1. call
o async_wait(100,cb); 1. call auto i = st_wait(100);
. Cal e e e e 20
E 2. call + pass callback RS Cco_await {,
' 3.retumn i 5 |
; : ! part 2 4. resume
: 2. call : 12 = calicick | .. o
| 3. after 100 ms: return i pa =G 1 7. suspend
i ' ! 2 call + pass c.h.
1 ! 1 3. retun
i . re '
4. retum ! : :
E wait E async_wait re E async_wait E
5 communication framework 5 communication framework E E communication framework E
E 5 5. after 100 ms: E E 5. after 100 ms: 5
E ! place event on queue ! E place event on queue & el '

e ‘ e . et e Lt) NN e i A A i, Lk 7a. retum

event loop N. cal event loop event loop

N+1. retum -

synchronous asynchronous coroutines

CUIIUI VUIDWLTHIVI VUL | ITICCLyY D eve s FUDUC & LdpyEelni Zusd. ALLTIgIIWL 1eserved | _74

WHY USE COROUTINES?

Function/coroutine with (a)synchronous wait (2/4)

Synchronous

= function1 has 2 parts with a wait() call in between. Part 2 is executed after a delay of 100 units (e.g., ms)
introduced by the call of wait(100).

= The wait() call blocks the thread that calls function1 and the caller(s) of function1 (if any).
* This thread could be the only thread in the application.

Asynchronous
= function1 has been split into 2 smaller parts. The first part still belongs to function1.
= The second part is placed in a new function whose address is passed as the second argument to async_wait.
= function1 returns control after having called async_wait
« async_wait and function1 do not block the calling thread.
= The application (re)enters the event loop.
= After 100 units, the timer expires. The communication framework places an event in the event queue.
= The event loop calls the callback function (that contains the second part of function1).

WHY USE COROUTINES?

Function/coroutine with (a)synchronous wait (3/4)

Coroutines
= function1 has been replaced with coroutine1. coroutine1 contains the 2 parts from function1.

= coroutine1 calls st(art) wait(100), which returns an object t.

« The implementation of st_wait calls async_wait() and registers a generic completion handler (i.e., a function that is devoid
of any application code) with the communication framework.

- Because async_wait() is a non-blocking call, st_wait() is non-blocking as well.
= coroutine1 co_awaits t.
= Because the timer has not yet expired, the coroutine suspends and returns control to its caller.
= The application (re)enters the event loop.
= After 100 units, the timer expires. The communication framework places an event in the event queue.

= The event loop calls the completion handler. The completion handler resumes coroutine1, which runs to
completion.

WHY USE COROUTINES?

Function/coroutine with (a)synchronous wait (4/4)

Comparison

= The synchronous and coroutine version are very close to each other in coding style: there is only one
function/coroutine with part 2 following part 1.

= The asynchronous and coroutine version are very close in their control flow, but the coroutine version hides the
difficult part from the application developer. The C++ compiler does the difficult work, together with a coroutine
library that provides st_wait.

Note

= Because the implementation of an asynchronous wait requires the use of a communication framework (such
as Boost ASIO), and most examples in this presentation do not use any real communication framework, there
is no source code for this example.

WHY USE COROUTINES?

Function/coroutine with synchronous write and asynchronous read (1/5)

synchronous

function1

1. call

1. call

| 4 call |
' -SEo 5. after X ms: return '

6. re:lum

asynchronous
function1

part 1

write(...);
async_read(__);

part 2 = callback

4 call + pass c.b.

5. return

async_read

communication framework

7. after X ms:
place event on queue

event ioop

Johan Vanslembrouck | Meeting C++ 2025

event loop

coroutine

coroutine1

1. call

o
w
c

®
a

part 1

write(__.);
auto t = st_read(_..);
co_await t;

8a. resume

=19 <uspend ~~
4_call + pass ch. e

5. return
async_read
communication framework

7. after X ms:
place event on queue

8. call

e o e e e e e e o) e o e e e e e

event loop

Public © Capgemini 2025. All rights reserved | 38

WHY USE COROUTINES?

Function/coroutine with asynchronous write and asynchronous read (2/5)

asynchronous coroutine

function1 coroutine1

part 1
1. call 1. call .
auto 11 = st_write(__);
co_await t1;
E auto 2= st _read(__); g
E : 2. call co_await 2; !
i ! 3. retum 11a. resume—7 read ch.
HE E part2 N "~~712. suspend """ |

E ' | 7. call / 8. retum | E
| : | 4| suspend : : E
E async_write async_read pt i async_write async_read 1 '
f communication framework o ' communication framework ' :
' 8 i " 11 call 12a. return
: P ! 6. call ! - !
E 5. after X ms: 10. after Y ms: | E E 5. after X ms: 10. after Y ms: E i
E place event on queue place event on queue E ! i place event on queue place event on queue i E
i E E E 9a. retum E

event loop event loop

Johan Vanslembrouck | Meeting C++ 2025 Public © Capgemini 2025. All rights reserved | 39

WHY USE COROUTINES?

Function/coroutine with (a)synchronous write and (a)synchronous read (and other) (3/5)

= The control flow of (a)synchronous read and write is similar to the control flow of the (a)synchronous wait.
Therefore, the explanation has been omitted (see previous slides).

= The source code examples listed in the next slides use, in addition to (a)synchronous read and write, also
(a)synchronous versions of create, open, close and remove.

« For communication frameworks, connect is used instead of open.

= The examples use simulated read, write, ..., operations: there is no standardized asynchronous 1/O library.

WHY USE COROUTINES?

Function/coroutine with (a)synchronous write and (a)synchronous read (and other) (4/5)

Synchronous:

= Basic examples: p1000-sync.cpp, p1001-sync.cpp (The second example uses a second write after the read.)

= Running the ‘synchronous’ function on a dedicated thread to simulate 2 parallel accesses: p1010-sync-
thread.cpp, p1011-sync-thread.cpp

Asynchronous:
= Basis examples using callback functions: p1020-async.cpp, p1021-async.cpp
= Examples using lambdas in lambda in lambdas, etc.: p1025-async.cpp, p1026-async.cpp

= Examples running the completion handlers on a dedicated thread: p1030-async-thread.cpp, p1031-async-
thread.cpp

https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1000-sync.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1000-sync.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1000-sync.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1001-sync.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1001-sync.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1001-sync.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1010-sync-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1010-sync-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1010-sync-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1010-sync-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1010-sync-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1011-sync-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1011-sync-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1011-sync-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1011-sync-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1011-sync-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1020-async.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1020-async.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1020-async.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1021-async.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1021-async.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1021-async.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1025-async.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1025-async.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1025-async.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1026-async.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1026-async.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1026-async.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1030-async-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1030-async-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1030-async-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1030-async-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1030-async-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1031-async-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1031-async-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1031-async-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1031-async-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1031-async-thread.cpp

WHY USE COROUTINES?

Function/coroutine with (a)synchronous write and (a)synchronous read (and other) (5/5)

Coroutines (using a simple coroutine implementation)
= Examples: p1040-coroutine.cpp, p1041-coroutine.cpp, p1042-coroutine.cpp
Coroutines (using corolib):

= Examples: p1060-corolib.cpp, p1061-corolib.cpp, p1062-corolib.cpp

Coroutines (using corolib with the completion handler running on a dedicated thread):
= Examples: p1070-corolib-thread.cpp, p1071-corolib-thread.cpp, p1072-corolib-thread.cpp
Remarks on using a dedicated thread

= When running the callback function of an asynchronous function on a dedicated thread, it is possible to restore
the synchronous/sequential style of synchronous applications by synchronizing the thread (1) that has called
the asynchronous function with the thread (2) on which the callback function runs.

* E.g., using a binary semaphore, thread (1) acquires the semaphore which is released by thread (2).
* However, this introduces local waiting points inside the application.

= Using coroutines, only one thread is needed without introducing local waiting points.

https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1040-coroutine.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1040-coroutine.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1040-coroutine.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1041-coroutine.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1041-coroutine.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1041-coroutine.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1042-coroutine.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1042-coroutine.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1042-coroutine.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1060-corolib.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1060-corolib.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1060-corolib.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1061-corolib.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1061-corolib.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1061-corolib.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1062-corolib.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1062-corolib.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1062-corolib.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1070-corolib-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1070-corolib-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1070-corolib-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1070-corolib-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1070-corolib-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1071-corolib-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1071-corolib-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1071-corolib-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1071-corolib-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1071-corolib-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1072-corolib-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1072-corolib-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1072-corolib-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1072-corolib-thread.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines2/p1072-corolib-thread.cpp

WHY USE COROUTINES?

Following examples

= The following examples will use RMI (remote method invocation).
* In this context, RMI is equivalent to RPC (remote procedure call).
« RMI uses more the original object-oriented terminology (Smalltalk, remember).
= On the client side, a RMI involves one or more (a)synchronous writes and one or more (a)synchronous reads.

* ... depending on the number of segmentations and reassemblies.

= A RMI may also involve setting up a connection (connect) before the writes and reads, followed by closing the
connection.

= The following examples will only use a single write and a single read.

WHY USE COROUTINES?

Overview: asynchronous I/O and communication examples

Lower level: I/O

= Function/coroutine with (a)synchronous wait, write or read
Upper level: RMI/RPC

= Function with 1 RMI (5 slides)

= Call stack + function with 1 RMI

= Function with 3 sequential RMls

= Function with 3 “parallel” RMIs

= Function with RMI inside nested loop

= Function with RMI inside nested loop + segmentation

WHY USE COROUTINES?

Function/coroutine with 1 RMI (1/5): synchronous — asynchronous — coroutine

// Synchronous

: : . . : . // Coroutine
int functionl(int inl, int in2) async task<int> coroutinel (int inl, int 1in2)
{ —

{
int outl = -1, out2 = -1;
int retl = co_await remoteObjlco.opl(inl, in2Z2, outl, out2);
co_return inl + in2 + outl + out2 + retl;

int outl = -1, out2 = -1;
int retl = remoteObjl.opl(inl, in2, outl, out?);
return inl + in2 + outl + out2 + retl;

}

// Asynchronous

struct functionl ctxt t The synchronous and coroutine examples
t i are syntactically very close to each other
int 1nl; . .
int in2; and have been placed side by side.
int* ret;
}i Asynchronous example: many styles are
void functionlalt2(int inl, int in2, inté& ret) DOSSIble’ Wlth eXp|ICIt O_r anonym_ous (=
{ lambda) callback functions, or with a single
functionl ctxt t* ctxt = new functionl ctxt t{ inl, in2, &ret }; . . .
remoteObiT.sendc opl(inl, in2, function implemented as a state machine,
[ctxt] (int outl, int out2, int retl) the way the C++ Comp”er Comp“es a
{ .
*ctxt->ret = ctxt->inl + ctxt->in2 + outl + out2 + retl; coroutine.

delete ctxt;
)

WHY USE COROUTINES?

Function/coroutine with 1 RMI (2/5) (see next slides for explanation)

synchronous asynchronous coroutine
function1 function1 coroutine
part 1 part 1
it sendc_op(ini, __); 1. call auto t= op(in1, __);
.ca i s
E 4_call + pass callback R B Co_awatt I,
i 5. retun]
i ! t ' part 2
i 4. call ' _ i 2. call L. "
| 2. call 5. after X ms: return ! L2 LAk | 3. retumn 9. suspend
! 3. return | . |] 4. call + passc.h.
: 5. rétum E E 5. return
6. retun i ' ' '
i E i 6| suspend !
: E 9. retum : async_read E
5) ; : communication framework i
' ; 1'8. call ; !
E E 7. after X ms: E E 7. after X ms: E
E ' place event on queue ; E place event on queue arcan :

-------------------------------- 9a. retum

event loop event loop event loop

Johan Vanslembrouck | Meeting C++ 2025 Public © Capgemini 2025. All rights reserved | 46

WHY USE COROUTINES?

Function/coroutine with 1 RMI (3/5): synchronous style

= The RMI op(in1, ...)is ...
« writing the request as a series of bytes/bits (onto the connection) to the server
» and reading the response byte/bit stream from the server.

= While waiting for the response to arrive, the application cannot process any other inputs.
« function1 does not return to the global event loop.

= This type of application is not reactive.
= Source code: p1000-sync-1rmi.cpp , p1050-sync-1rmi.cpp (with code to simulate write and read operations)

= When possible, run independent RMIs on different threads to improve the throughput.
= Source code: p1002-sync+thread-1rmi.cpp, p1004-sync+thread-1rmi.cpp

https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1000-sync-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1000-sync-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1000-sync-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1000-sync-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1000-sync-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1050-sync-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1050-sync-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1050-sync-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1050-sync-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1050-sync-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1002-sync%2Bthread-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1002-sync%2Bthread-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1002-sync%2Bthread-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1002-sync%2Bthread-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1002-sync%2Bthread-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1004-sync%2Bthread-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1004-sync%2Bthread-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1004-sync%2Bthread-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1004-sync%2Bthread-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1004-sync%2Bthread-1rmi.cpp

WHY USE COROUTINES?

Function/coroutine with 1 RMI (4/5): asynchronous style

= The synchronous function (see previous slide) is split into two functions.
= The first function ...
 contains the original code up till the point of the RMI
» sends a request sendc_op(in1, ...) with the input arguments of the RMI
* registers a second function (see next point) with the communication framework
* returns control to the global event loop to handle the response (if completion is on the same thread).

= The second function (completion handler, here implemented as a lambda and used as a callback function) ...

* handles the output arguments and return value of the RMI
+ contains the code that followed the RMI in the synchronous function.

= When the completion event arrives, the completion handler is called back.
= Many styles are possible, including using a single function implemented as a state machine.
= Source code: completion on the same thread: p1010-async-1rmi.cpp, p1060-async-1rmi.cpp

= Source code: completion on a dedicated thread: p1015-async-thread-1rmi.cpp (synchronous application!)

https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1010-async-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1010-async-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1010-async-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1010-async-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1010-async-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1060-async-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1060-async-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1060-async-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1060-async-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1060-async-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1015-async%2Bthread-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1015-async%2Bthread-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1015-async%2Bthread-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1015-async%2Bthread-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1015-async%2Bthread-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1015-async%2Bthread-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1015-async%2Bthread-1rmi.cpp

WHY USE COROUTINES?

Function/coroutine with 1 RMI (5/5): coroutines (corolib)

= The implementation of op1(in1, ...) registers a completion handler with the communication framework.
» This completion handler is application-independent (i.e., it does not contain any application-specific code).

= At the co_await statement, the coroutine suspends itself and returns control to the main event loop (if the
response has not arrived yet).

= When the completion event arrives, the completion handler is called back.

= The completion handler passes the response and resumes the coroutine.

= The original code does not have to be restructured.

= Everything runs on the same thread (if a single-threaded asynchronous communication framework is used).
= Source code: p1020-coroutines-1rmi.cpp, p1070-coroutines-1rmi.cpp

https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1020-coroutines-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1020-coroutines-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1020-coroutines-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1020-coroutines-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1020-coroutines-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1070-coroutines-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1070-coroutines-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1070-coroutines-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1070-coroutines-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1070-coroutines-1rmi.cpp

WHY USE COROUTINES?

Overview: asynchronous I/O and communication examples

Lower level: I/O
= Function with (a)synchronous wait, write and read
Upper level: RMI/RPC
= Function with 1 RMI
= Call stack + function with 1 RMI (7 slides)
* The call stack can be an application call stack, a protocol call stack, a device driver call stack
= Function with 3 RMIs
= Function with 3 “parallel” RMIs
= Function with RMI inside nested loop
= Function with RMI inside nested loop + segmentation

WHY USE COROUTINES?

Call stack + function with 1 RMI (1/7): real world example

= |[SO/OSI (International Organization for Standardization / Open
Systems Interconnection) based protocol stack.

= Example: BLE (Bluetooth Low Energy) stack implemented in C.

= Function at layer N calls a function at the lower layer N-1 and passes a
callback function to that layer N-1 function.

= Several layer N functions can call the same layer N-1 function.
- E.g., TCP and UDP are at layer 4, IP at layer 3.

= The layer 1 function writes the request onto the physical medium but
does not wait for a response.

= The response is handled by the registered callback functions in the
opposite direction.

= The callback functions must find their way back to the correct top layer.
= Other example: device driver stack.

Layer4 function

call

— — — —passed as callback- -
to Layer3 function

registers
~ T Layerd T T
callback

Layer3 function Layer3 callback

|
_ _ passed ascallback _
to Layer2 function

registers
- - Layer3 — =—
callback

Layer2 function Layer2 callback

_ _passed as callback_
to Layer1 function

registers
- - Layer2 — -
callback

Layer1 function Layer1 response

WHY USE COROUTINES?

Call stack + function with 1 RMI (2/7): synchronous style

function1 function2 function3
part 1
2. call 3. call remote_op();
] : 2
9. retum 8. retum B
E 4_call 6. call
N 5.retum 7. retumn
E 1. call
e 10.return or enfer - - - === - m - s m e e e e >

event loop

Johan Vanslembrouck | Meeting C++ 2025 Public © Capgemini 2025. All rights reserved | 52

WHY USE COROUTINES?

Call stack + function with 1 RMI (3/7): asynchronous style

function1 function2 function3

13. call

=-==16_ refomr ==~ ~~~-

4. call 6. call + register CEB
5. retumn 7. retum

communication framework

11. after X ms:
place event on queue

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
! async_read
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
12 call
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

- 1. cal i
e L T > e T 17 return-

event loop
Johan Vansle Capgemini 2025. All rights reserved | 53

WHY USE COROUTINES?

Call stack + function with 1 RMI (4/7): coroutines

coroutined

part 1

task t = coroutine2();
co_await t;

part 2

""" -§. suspend -~

15 suspend™ ™

coroutine2

part 1

task t = coroutine3();
co_await t;

part 2 13. resu

-16. suspend

me

coroutine3

6. call + register callback
7. reftum

4. call
5. returm

write

async_read

commumnication framework

11. after X ms:
place event on queue

—123. resume

17. suspend ~ "4

12.

event loop

call

WHY USE COROUTINES?

Call stack + function with 1 RMI (5/7) (see previous slides for pictures)

Synchronous
= Natural style, but not reactive.
= Source code: p1100-sync-callstack-1rmi.cpp, p1150-sync-callstack-1rmi.cpp

Asynchronous
= The original functions must be split into a “forward” function and a “backward” function.
= The backward functions form a chain of callback functions traversed in reverse order.

= Note: the stack of the forward functions has unrolled when the backward functions are called and cannot be
used to store information for the backward direction: this information is typically stored in “context” objects
allocated on the heap.

= Reactive application, but it is more difficult to follow the control flow.
= Source code: p1110-async-callstack-1rmi.cpp, p1160-async-callstack-1rmi.cpp
= Source code: p1112-async-callstack-1rmi-cs.cpp

https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1100-sync-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1100-sync-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1100-sync-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1100-sync-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1100-sync-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1100-sync-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1100-sync-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1150-sync-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1150-sync-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1150-sync-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1150-sync-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1150-sync-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1150-sync-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1150-sync-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1110-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1110-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1110-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1110-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1110-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1110-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1110-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1160-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1160-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1160-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1160-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1160-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1160-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1160-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1112-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1112-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1112-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1112-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1112-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1112-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1112-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1112-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1112-async-callstack-1rmi-cs.cpp

WHY USE COROUTINES?

Call stack + function with 1 RMI (6/7) (see previous slides for pictures)

Coroutines

= Natural style, reactive again.

= Same flow as in the asynchronous case.

= The compiler and the coroutine library do all the hard work.

= Source code: p1120-coroutines-callstack-1rmi.cpp, p1170-coroutines-callstack-1rmi.cpp

= Source code: p1122-coroutines-callstack-1rmi.cpp, p1124-coroutines-callstack-1rmi.cpp, p1126-coroutines-
callstack-1rmi.cpp

Coroutines and asynchronous
= What if you have already implemented an asynchronous call stack but want to switch to coroutines?

= |t is possible to add a coroutine layer on top of an asynchronous call stack implementation with minor
modifications to the top layer.

= Source code: p1130-coroutines-async-callstack-1rmi.cpp, p1132-coroutines-async-callstack-1rmi-cs.cpp

https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1120-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1120-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1120-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1120-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1120-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1120-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1120-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1170-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1170-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1170-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1170-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1170-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1170-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1170-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1122-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1122-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1122-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1122-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1122-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1122-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1122-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1124-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1124-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1124-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1124-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1124-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1124-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1124-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1126-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1126-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1126-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1126-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1126-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1126-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1126-coroutines-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1130-coroutines-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1130-coroutines-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1130-coroutines-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1130-coroutines-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1130-coroutines-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1130-coroutines-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1130-coroutines-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1130-coroutines-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1130-coroutines-async-callstack-1rmi.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1132-coroutines-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1132-coroutines-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1132-coroutines-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1132-coroutines-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1132-coroutines-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1132-coroutines-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1132-coroutines-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1132-coroutines-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1132-coroutines-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1132-coroutines-async-callstack-1rmi-cs.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1132-coroutines-async-callstack-1rmi-cs.cpp

WHY USE COROUTINES?

Call stack + Function with 1 RMI (7/7): summary

Synchronous

= Natural function call style, but not reactive: the read operation can block the application for a longer time
waiting for the response to arrive.

Asynchronous

= Lots of manual work involved to rewrite a non-reactive synchronous program into a reactive one: introduction
of callback functions, passing them on the call stack, ...

Coroutines

= Synchronous style program can be turned into a reactive asynchronous style program by using co_await,
co_return and a dedicated coroutine return type.

= The control flow is very similar to the asynchronous case. The compiler is doing the hard work.

WHY USE COROUTINES?

Overview: asynchronous I/O and communication examples

Lower level: I/O

= Function with (a)synchronous wait, write or read
Upper level: RMI/RPC

= Function with 1 RMI

= Call stack + function with 1 RMI

= Function with 3 sequential RMIs (7 slides)

= Function with 3 “parallel” RMIs

= Function with RMI inside nested loop

@

WHY USE COROUTINES?

Function with 3 sequential RMIs (1/7): real world example

= [n 2005, a client company decided to rewrite their software using a self-developed asynchronous communication
framework (ACF).

= Motivation to introduce a new approach:
* Avoid problems with multi-threaded applications (imperfect protection of shared variables).

« The previous system supported asynchronous operations, but the application writer had to explicitly check the completion of
an operation using polling. This was sometimes forgotten or ignored; not doing this usually did not cause any problems.

* Applications mixed business logic with TCP/IP communication (including setting up and closing connections).

= New applications must all be single-threaded, communicating with each other using the ACF.
» The ACF hides the TCP/IP communication between applications.

= The new approach led to a specific programming style, that can be described as a “chain of callback functions.”
+ See next slide for an illustration.

= All applications use a single, global event loop, from where the callback functions are called.

= | have encountered this programming style at many other clients.

WHY USE COROUTINES?

Function with 3 sequential RMlIs (2/7): real world example

passed as callback
to start_op1

passed as callback
to stari_op2

passed as callback
to start_op3

passed as callback
to start_op4

———

= A callback function first handles the response of an operation (first part) and then starts one or more new
operations (second part).

= This new operation(s) may seem unrelated when just looking at the content of the callback function.
= Usually, a context variable is passed containing information that is used in several parts of the chain.
= This style of programming was my main motivation to start studying C++ coroutines.

WHY USE COROUTINES?

Function with 3 sequential RMIs (3/7)

asynchronous .
synchronous (simplified) coroutine
function1 function1 coroutine1

part 1 part 1
remObj1.op1(); j1. =, : co_await remObj1_start_op1();

part 2 part 2
remObj2_0p2(); co_await remObj2 start_op2();

part 3 part 3

remObj3.0p3(); j2. | : co_await remObj3.start_op3();

part 4 part 4

WHY USE COROUTINES?

Function with 3 sequential RMlIs (4/7): synchronous — coroutine

int functionl (int inl, int in2, int testwval)
{
int outl = -1, out2 = -1;
int retl = remoteObjl.opl(inl, in2, outl, out2);
// 1 Do stuff
if (retl == testval) {
int out3 = -1;
int ret2 = remoteObj2.op2(inl, in2, out3);
// 2 Do stuff
return ret2;

}
else {
int outd4d = -1, outb = -1;
int ret3 = remoteObj3.op3(inl, outd, outh);
// 3 Do stuff
return ret3;
}

async_task<int> coroutinel(int inl, int in2, int testval)

{
int outl = -1, out2 = -1;
int retl = co_await remoteObjlco.opl(inl, in2, outl, out2);
// 1 Do stuff

if (retl == testval) {
int out3 = -1;
int ret2 = co_await remoteObj2co.op2(inl, in2, out3);

// 2 Do stuff
co_return ret2;
}
else {
int outd4d = -1, outb = -1;
int ret3 = co_await remoteObj3co.op3(inl, out4, outbd);
// 3 Do stuff
co_return ret3;

The synchronous and coroutine examples are syntactically very close to each other and have been placed
side by side. The asynchronous example is more complex, see next slide.

WHY USE COROUTINES?

Function with 3 sequential RMls (5/7): async.

struct functionl ctxt t

{

int inl;

int in2;

int testval;
};

void functionl (int inl, int in2, int testval, inté& ret)
{
functionl ctxt t* ctxt = new functionl ctxt t{inl, in2,
testval};
remoteObjl.sendc opl(inl, in2,
[this, ctxt, &ret] (int outl, int out2, int retl) {
this->functionla(ctxt, outl, out2, retl, ret);
})
// la Do stuff that doesn't need the result of the RMI

4

void functionla(functionl ctxt t* ctxt, int outl, int out2, int retl,

int& ret)
{
// 1lb Do stuff that needs the result of the RMI
if (retl == ctxt->testval) {
remoteObj2.sendc op2(ctxt->inl, ctxt->in2,
[this, &ret] (int outl, int retl) {
this->functionlb (outl, retl, ret);
});
// 2a Do stuff that doesn't need the result of the RMI
}
else {
remoteObj3.sendc op3(ctxt->inl,
[this, &ret] (int outl, int out2, int retl) {
this->functionlc(outl, out2, retl, ret);
});
// 3a Do stuff that doesn't need the result of the RMI
}
delete ctxt;
}
void functionlb(int out3, int ret2, int& ret)
{
// 2b Do stuff that needs the result of the RMI
ret = ret2;
}

void functionlc(int outd4, int outb5, int ret3, int& ret)

{
// 3b Do stuff that needs the result of the RMI
ret = ret3;

WHY USE COROUTINES?

Function with 3 sequential RMls (6/7): asynchronous (alternative with lambdas)

void functionlalt(int inl, int in2, int testval, int& ret)

{

remoteObjl.sendc opl(inl, in2,
[this, ctxt, &ret] (int outl, int out2, int retl) {
// 1lb Do stuff that needs the result of the RMI
if (retl == ctxt->testval) {
remoteObj2.sendc op2(ctxt->inl, ctxt->in2,
[this, &ret] (int out3, int ret2) {

// 2b Do stuff that needs the result of the RMI
ret = ret2;

)
// 2a Do stuff that doesn't need the result of the RMI

}
else {
remoteObj3.sendc op3(ctxt->inl,
[this, &ret] (int outd4, int outb, int ret3) {
// 3b Do stuff that needs the result of the RMI
ret = ret3;
}) s
// 3a Do stuff that doesn't need the result of the RMI
}

delete ctxt;

})
// la Do stuff that doesn't need the result of the RMI

Johan Vanslembrouck | Meeting C++ 2025

functionl ctxt t* ctxt = new functionl ctxt t{ inl, in2, testval };

Public © Capgemini 2025. All rights reserved | 64

WHY USE COROUTINES?

Function with 3 sequential RMls (7/7): source code

Synchronous
= Source code: p1200-sync-3rmis.cpp

Asynchronous
= Source code: p1210-async-3rmis.cpp

= Source code: p1212-async-3rmis-local-event-loop.cpp

= Using Boost ASIO (connect -> write -> read): clientserverO/client1.cpp, clientserverO/client2.cpp
Coroutines

= Source code: p1220-coroutines-3rmis.cpp

= Source code: p1222-coroutines-3rmis-generichandler.cpp

Johan Vanslembrouck | Meeting C++ 2025 Public © Capgemini 2025. All rights reserved | 65

https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1200-sync-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1200-sync-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1200-sync-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1200-sync-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1200-sync-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1210-async-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1210-async-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1210-async-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1210-async-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1210-async-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/boost/clientserver0/client1.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/boost/clientserver0/client2.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1220-coroutines-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1220-coroutines-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1220-coroutines-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1220-coroutines-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1220-coroutines-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1222-coroutines-3rmis-generichandler.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1222-coroutines-3rmis-generichandler.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1222-coroutines-3rmis-generichandler.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1222-coroutines-3rmis-generichandler.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1222-coroutines-3rmis-generichandler.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1222-coroutines-3rmis-generichandler.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1222-coroutines-3rmis-generichandler.cpp

WHY USE COROUTINES?

Overview: asynchronous I/O and communication examples

Lower level: I/O

= Function with (a)synchronous wait, write or read
Upper level: RMI/RPC

= Function with 1 RMI

= Call stack + function with 1 RMI

= Function with 3 sequential RMIs

= Function with 3 “parallel” RMIs (6 slides)

= Function with RMI inside nested loop

= Function with RMI inside nested loop + segmentation

WHY USE COROUTINES?

Function with 3 “parallel” RMlIs (1/6): real world examples

= In @ message-based system, process A sends a 4’“

message to N other processes B1, ... requesting for

information. : n
= Every process Bi sends a response to process A. | : |
= Process A collects the responses and proceeds when : ;
all responses have been received. @~ . * | n
= Processes are structured as finite state machines L e :
(FSMs)
* In every state only a subset of the messages
will/can be handled. = |[n the “2005 system,” it was sometimes more efficient
- A message that is received in a “wrong” state to start independent operations on multiple servers in
indicates a (logical) error. parallel, gather the responses and then proceed,

instead of calling operations in a sequential way.
= An alternative architecture for this type of system Jop d Y

could be publish/subscribe. = This is not possible using a synchronous style.

WHY USE COROUTINES?

Function with 3 “parallel” RMIs (2/6)

asynchronous
Syhchronous (simplified)
function1 function1

part 1

remODbj1.op1();

remODbj2.0p2();
remObj3.0p3();

part 2

op1 response op2 response op3 response

all completed? all completed? all completed?

coroutine

coroutine

part 1

oper op1 = remObj1_start_op1();
oper op2 = remObj2 start_op2();

oper op3 = remObj3.stari_op3();
co_await when_all(op1, op2, op3);

part 2

WHY USE COROUTINES?

Function with 3 “parallel” RMIs (3/6): synchronous — coroutine

int functionl(int inl, int in?2) async_task<int> coroutinel(int inl, int in2)
{ {
int outll = -1, outl2 = -1; int outll = -1, outl2 = -1;
int out2l1 = -1, out22 = -1; int out2l1l = -1, out22 = -
int out3l = -1, out32 = -1; int out3l = -1, out32 = -1;
int retl = remoteObjl.opl(inl, in2, outll, outl?2 async_task<int> opl = remoteObjlco.opl(inl, in2, outll, outl2);
int ret2 = remoteObj2.opl(inl, in2, out2l, out22 async_ task<int> op2 = remoteObj2co.opl(inl, in2, out2l, out22);
int ret3 = remoteObj3.opl(inl, in2, out3l, out32 async_task<int> op3 = remoteObj3co.opl(inl, in2, out3l, out32);
int result = retl + ret2 + ret3; co_await when all(opl, op2, op3);
return result; int result = opl.get result() + op2.get result() + op3.get result();
} co_return result;
}

The synchronous and coroutine examples are syntactically very close to each other and have been placed
side by side. The asynchronous example is more complex, see next slide.

WHY USE COROUTINES?

Function with 3 “parallel” RMIs (4/6): asynchronous style

struct functionl ctxt t

{
bool callfinished[3]{ false, false, false };
int result[3]1{ O, O, O };
};
void functionl (int inl, int in2, int& ret)
{
functionl ctxt t* ctxt = new functionl ctxt t;
remoteObjl.sendc opl(inl, in2,
[this, ctxt, &ret] (int outl, int out2, int retl)
{ this->functionla(ctxt, 0, outl, out2, retl, ret); });
remoteObj2.sendc opl(inl, in2,
[this, ctxt, &ret] (int outl, int out2, int retl)
{ this->functionla(ctxt, 1, outl, out2, retl, ret); });
remoteObj3.sendc opl(inl, in2,
[this, ctxt, &ret] (int outl, int out2, int retl)
{ this->functionla(ctxt, 2, outl, out2, retl, ret); });
}

void functionla(functionl ctxt t* ctxt, int index, int outl, int out2, int retl, int& ret)
{
ctxt->callfinished[index] = true;
ctxt->result[index] = retl;
if (ctxt->callfinished[0] && ctxt->callfinished[]l] && ctxt->callfinished[2]) {
ret = ctxt->result[0] + ctxt->result[l] + ctxt->result[?];
}

WHY USE COROUTINES?

Function with 3 “parallel” RMls (5/6): asynchronous style (see a previous slide for a picture)

= The synchronous implementation uses 3 RMIs that can, in theory, run in parallel.
» The synchronous implementation is inefficient because of the sequential execution.
* Once the last RMI has returned, the function continues with part 2.

= |[n the asynchronous implementation, the 3 RMIs can be started one after the other (without waiting for the
response).

* The responses can arrive in any order and are handled by callback functions.

« Each callback function 1) retrieves the out arguments and return value of the original operations and 2) checks if the other
callbacks have run.

— If no, do nothing.
— If yes, call the part 2 function.

WHY USE COROUTINES?
Function with 3 “parallel” RMIs (6/6): source code

Synchronous
= Source code: p1500-sync-3-parallel-rmis.cpp
Asynchronous

= Source code: p1510-async-3-parallel-rmis.cpp
Coroutines

= Source code: p1520-coroutines-3-parallel-rmis.cpp

Johan Vanslembrouck | Meeting C++ 2025 Public © Capgemini 2025. All rights reserved | 72

https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1500-sync-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1500-sync-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1500-sync-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1500-sync-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1500-sync-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1500-sync-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1500-sync-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1500-sync-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1500-sync-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1510-async-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1510-async-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1510-async-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1510-async-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1510-async-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1510-async-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1510-async-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1510-async-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1510-async-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp

WHY USE COROUTINES?

Overview: asynchronous I/O and communication examples

Lower level: I/O

= Function with (a)synchronous wait, write or read
Upper level: RMI/RPC

= Function with 1 RMI

= Call stack + function with 1 RMI

= Function with 3 sequential RMIs

= Function with 3 “parallel” RMIs

= Function with RMI inside nested loop (4 slides)

= Function with RMI inside nested loop + segmentation

WHY USE COROUTINES?

Function with RMI inside nested loop (1/4): real world examples

Measuring the round-trip delay of messages (protocol data units) transferred onto a serial line.

= Quter loop: construct messages with lengths between a minimum length [1 and a maximum length 12.
« Smallest message: e.g., STX — empty body — CRC — ETX.

= [nner loop: send and receive each same-length message several times and calculate the average.
= The program should not block waiting for a send/receive interaction to have completed.

Changing the frequency on a transmitter or receiver with variable capacitors from 1 to f2.

= Quter loop: change the frequency in small steps between f1 and f2.

= [nner loop: calculate and adjust position of each motor driving a variable capacitor.

= The program should not block waiting for all motors to have reached their target positions.
Discussion

= Both algorithms can run on a dedicated worker thread, with the main thread always ready to receive user input
(such as “stop” or requesting the current status).

= The main thread and the worker thread must share some information.

WHY USE COROUTINES?

Function with RMI inside nested loop (2/4): synchronous - coroutine

void functionl ()

async_task<void> coroutinel ()
{ {
for (int i = 0; i < MAX MSG LENGTH; i++) for (int i = ;1< MAX MSG LENGTH; i++)
{ {
Msg msg (i *) ; Msg msg (i *)/
for (int j = 0; j < NR MSGS TO SEND; J++) for (int j = ;] < NR MSGS TO SEND; J++)
{ {
int retl = remoteObjl.opl (msqg); int retl = co await remoteObjlco.start opl (msg);
(void) retl; (void) retl;
} }
}

The synchronous and coroutine examples are syntactically very close to each other and have been placed
side by side. The asynchronous example is more complex, see next slide.

WHY USE COROUTINES?

Function with RMI inside nested loop (3/4): asynchronous

void functionla(functionl ctxt t* ctxt)
{
if (ctxt->j < NR _MSGS_TO SEND) {

struct functionl ctxt_t remoteObjl.sendc opl (ctxt->msg,

{ [this, ctxt] () {
Msg msg; this->functionla (ctxt) ;
int 1 = 0; })
int j = 0; ctxt->j++;
}s; }
else {
void functionl () ctxt=->3 = 0;
{ ctxt=>i4+;
functionl ctxt t* ctxt = new functionl ctxt t; if (ctxt->i < MAX MSG LENGTH) {
ctxt->msg = Msg (0) ; ctxt->msg = Msg(ctxt->i * 10);
remoteObjl.sendc opl (ctxt->msg, remoteObjl.sendc opl (ctxt->msg,
[this, ctxt] () { [this, ctxt] () {
this->functionla(ctxt); this->functionla (ctxt) ;
b });
} ctxt->d++;
}
else {

// End of inner and outer loop
delete ctxt;

WHY USE COROUTINES?

Function with RMI inside nested loop (4/4): source code

Synchronous

= Source code: p1300-sync-nested-loop.cpp, p1350-sync-nested-loop.cpp
Asynchronous

= Source code: p1310-async-nested-loop.cpp, p1360-async-nested-loop.cpp
= Source code using Qt5: clientserver10/tcpclient00.cpp
Coroutines

= Source code: p1320-coroutines-nested-loop.cpp, p1370-coroutines-nested-loop.cpp

Johan Vanslembrouck | Meeting C++ 2025 Public © Capgemini 2025. All rights reserved | 77

https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1300-sync-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1300-sync-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1300-sync-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1300-sync-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1300-sync-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1300-sync-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1300-sync-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1350-sync-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1350-sync-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1350-sync-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1350-sync-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1350-sync-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1350-sync-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1350-sync-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1310-async-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1310-async-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1310-async-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1310-async-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1310-async-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1310-async-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1310-async-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1360-async-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1360-async-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1360-async-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1360-async-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1360-async-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1360-async-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1360-async-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/qt5/clientserver10/tcpclient00.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1320-coroutines-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1320-coroutines-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1320-coroutines-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1320-coroutines-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1320-coroutines-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1320-coroutines-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1320-coroutines-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1370-coroutines-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1370-coroutines-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1370-coroutines-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1370-coroutines-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1370-coroutines-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1370-coroutines-nested-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1370-coroutines-nested-loop.cpp

WHY USE COROUTINES?

Overview: asynchronous I/O and communication examples

Lower level: I/O

= Function with (a)synchronous wait, write or read

Upper level: RMI/RPC

= Function with 1 RMI

= Call stack + function with 1 RMI

= Function with 3 sequential RMls

= Function with 3 “parallel” RMIs

= Function with RMI inside nested loop

= Function with RMI inside nested loop + segmentation (2 slides)

WHY USE COROUTINES?
Function with RMI inside nested loop + segmentation (1/2): real world example

= |[n the nested loop example, | “forgot” that the lowest layer can only handle messages of a certain maximum
size.

= Messages larger than the MTU (maximum transfer unit) will have to be split into chunks of the maximum size
and reassembled at the receiver side.

= Can we add this segmentation + reassembly in all 3 cases (synchronous, asynchronous, coroutines) without
any (or with minimal) impact on the existing code?

WHY USE COROUTINES?

Function with RMI inside nested loop + segmentation (2/2): source code

Synchronous
= Source code: p1400-sync-segmentation.cpp

Asynchronous
= Source code: p1410-async-segmentation.cpp

Coroutines
= Source code: p1420-coroutines-segmentation.cpp

Johan Vanslembrouck | Meeting C++ 2025 Public © Capgemini 2025. All rights reserved | 80

https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1400-sync-segmentation.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1400-sync-segmentation.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1400-sync-segmentation.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1400-sync-segmentation.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1400-sync-segmentation.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1410-async-segmentation.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1410-async-segmentation.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1410-async-segmentation.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1410-async-segmentation.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1410-async-segmentation.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1420-coroutines-segmentation.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1420-coroutines-segmentation.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1420-coroutines-segmentation.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1420-coroutines-segmentation.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1420-coroutines-segmentation.cpp

WHY USE COROUTINES?

Overview: other uses of coroutines

= As an alternative to threads (7 slides, 2 examples)
= |In embedded software

= |n other programming languages (Python, C#, ...)

= Completion on another thread

= Local event loop

= CORBA: synchronous — callback — polling — coroutines
= Communicating finite state machines

WHY USE COROUTINES?

Coroutines as an alternative to threads (real world example 1) (1/7)

= Example: asynchronous distributed system using message communication.
= The system contains tens of processors communicating over an internal network
= Only one active/standby processor pair has access to a SCSI disk.

= Applications on other processors use an asynchronous file system interface to read/write data from/to disk.
« The equivalent of async_open, async_read, async_write, async_close, but with messages.

) 111

= To separate the file access flow from the application’s “business” flow, the file access flow runs on a dedicated
thread.

= The “business flow thread” communicates with the “file access thread” using an internal queue, posting the
data to be written to a file on the disk.

= Next slide: source code of a (simplified) coroutine implementation.
= Full source code: p1920-async queue-async file.cpp, p1922-async queue eqg-async file.cpp

https://github.com/JohanVanslembrouck/corolib/blob/master/examples/tutorial/p1920-async_queue-async_file.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/tutorial/p1920-async_queue-async_file.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/tutorial/p1920-async_queue-async_file.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/tutorial/p1920-async_queue-async_file.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/tutorial/p1920-async_queue-async_file.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/tutorial/p1922-async_queue_eq-async_file.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/tutorial/p1922-async_queue_eq-async_file.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/tutorial/p1922-async_queue_eq-async_file.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/tutorial/p1922-async_queue_eq-async_file.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/tutorial/p1922-async_queue_eq-async_file.cpp

WHY USE COROUTINES?

Coroutines as an alternative to threads (based upon real world example 1) (2/7)

async_ task<void> filewriter ()

{
while (true) {
int ret = -1;
std::string str = co_await queue.pop();
if (str.size() == 0)
break;
ret = co_await file.start open("alarms.txt");
(void) ret;
ret = co_await file.start write(str);
(void) ret;
ret = co_await file.start close();
(void) ret;
}
co_return;
}

async_task<void> producer (int nr operations)
{
for (int counter = 0; counter < nr operations; counter++) {
co_await dummy op();

std::string str = "This is string " + std::to_string(counter)
+ " to save";
co_await queue.push(str);
}
// Signal end of producer
co_await queue.push("");
co_return;

}

async_ task<void> mainflow(int nr operations)

{
int ret = co_await file.start create("alarms.txt");
(void) ret;

async_task<void> fw = filewriter();
async_task<void> pr = producer(nr operations);
co_await when all(fw, pr);

co_await file.start remove("alarms.txt");
co_return;

WHY USE COROUTINES?
Coroutines as an alternative to threads (example 2) (3/7)

= The code on the next slide uses two measurement loops (see above) that can run in parallel to optimize
throughput.

» [nstead of running them on a separate thread, the example uses coroutines instead, both for the measurement
functionality and for “spawning” two or more measurements.

4

WHY USE COROUTINES?

Coroutines as an alternative to threads (example 2) (4/7)

async task<int> TcpClient02::measurementLoop40 (TcpClientCo& tcpClient)

{
gDebug () << Q FUNC INFO << "begin'";

async task<int> TcpClient02::measurementLoop4i () int m;gLength =_O; . ,

{ - for (int selection = 0; selection < nr message lengths; selection++)
gDebug () << Q FUNC INFO << "begin"; {
async_task<int> tl = measurementLoop40(m tcpClientl);
async_task<int> t2 = measurementLoop40(m tcpClient2);

std::chrono::high resolution clock::time point start =
chrono::high resolution clock::now();

when all wa({ &tl, &t2 }); for (int i = 0; 1 < configuration.m numberTransactions; i++)
— 14 4
co await wa; { .
qubug() << Q FUNC INFO << "end"; QByteArray data = prepareMessage (selection);
co return 0; o ' msgLength = data.length();
} - ’ tcpClient.sendMessage (data) ;

async_operation<QByteArray> op = tcpClient.start reading();
OByteArray dataOut = co_await op;

gInfo() << dataOut.length() << ":" << dataOut;

. Fhi }
NOte' thlS example use Qts calculateElapsedTime (start, msgLength);
}

gDebug () << Q FUNC INFO << "end";
co_return 0;

WHY USE COROUTINES?

Coroutines as an alternative to threads (example 2) (5/7)

= Full source code: examples/clientserver11/tcpclient02.cpp

= measurementLoop44() starts async_task<int> t1 by calling measurementLoop40(m_tcpClient1).
= measurementLoop40(m_tcpClient1) runs until QByteArray dataOut = co_wait op;

= The reading operation has not yet completed: measurementLoop40() suspends and returns control to
measurementLoop44()

* To complete the operation, the event loop must run, which is not yet the case.
= Repeat the previous three steps for 2 and m_tcpClient2.

= Since t1 and t2 have not co_return-ed, measurementLoop44() suspends at the co_await line and returns
control to its calling function/coroutine, etc., until we reach the event loop (not in the code fragments).

= Either of the operations will complete, which will make the corresponding measurementLoop40 coroutine run
till the next co_await (next iteration in the double loop).

= This process continues until we leave the double loop and measurementLoop40() calls co_return.
= When both t1 and t2 have completed, measurementLoop44() resumes at co_await wa and calls co_return.

https://github.com/JohanVanslembrouck/corolib/blob/master/examples/qt5/clientserver11/tcpclient02.cpp

WHY USE COROUTINES?

Coroutines as an alternative to threads (6/7)

* Threads support pre-emptive multitasking.

« The OS can de-schedule one thread and schedule another thread, e.g. when one thread blocks on I/O or when it has
used its maximum allotted time (time slice).

= Coroutines support cooperative multitasking.

* One coroutine must voluntarily release control (suspend) to allow another coroutine to resume (on the same thread).
= Thread synchronization:

» Uses condition variables (CVs), (binary) semaphores, mutexes, latches, ...

« Athread that cannot proceed because it needs information (that is not available yet) acquires a semaphore or CV.

* Another thread that supplies the information releases the semaphore or CV the first thread has acquired.
= Coroutine “synchronization:”

+ A coroutine that cannot proceed because it needs information (that is not available yet) suspends.

* When the information becomes available, the code (completion handler) that makes the information available, resumes
the coroutine. This code can run on the same thread.

WHY USE COROUTINES?

Coroutines as an alternative to threads (7/7)

= Threads can be (de)scheduled at any time.
- Shared data must be protected using mutexes.
= Several coroutines can run on a single thread.
* An application may only have one thread (the main thread).
= Coroutines use a disciplined way to pass control to each other.
= IMO, we should avoid that the code of a single coroutine runs on different threads.
= Notice: | am not against threads, but we should use them in a very disciplined way:

* One variable, object, coroutine can only be accessed from a single thread.

« Threads communicate by posting information on a queue (“mailbox”) which is read by a single thread but can be written
to by all other threads. Only the mailbox needs to use thread synchronization, not the application.

* When one thread needs the services of an object owned by another thread, it posts a functor onto the latter thread’s
mailbox, which will execute the functor on behalf of the first thread.

WHY USE COROUTINES?

Overview: other uses of coroutines

= As an alternative to threads

= [n embedded software (1 slide)

= |n other programming languages (Python, C#, ...)

= Completion on another thread

= Local event loop

= CORBA: synchronous — callback — polling — coroutines
= Communicating finite state machines

WHY USE COROUTINES?

Embedded software — without operating system

= Size of embedded software: a few KB till a few hundred KB (or even more).
= Single executable:

* No traditional operating system is used or necessary to schedule multiple processes (there is only one process).

« Often a real-time kernel (RTK) or real-time operating system (RTOS) is integrated in the application to provide threads
with different priorities, e.g., to separate long-running background tasks from tasks that need immediate response.

= Embedded systems usually do a lot of (asynchronous) I/O (serial bus, USB, I?C, ...)
= Coroutines can be used as an alternative to RTK/RTOS threads.
» Use several event queues, one queue per thread priority.
* Interrupt service routines (ISRs) create an event and place it in an event queue.
= This approach works well as long as long-running coroutines voluntarily return control by calling co_await.

» This mechanism could be implemented using an “artificial” asynchronous operation: the operation posts its “response” in
the corresponding low-priority event queue.

* No pre-emption or time-sliced scheduling mechanism is necessary.
* However, this approach may lead to unnecessary “yields” to allow the event loop to run.

WHY USE COROUTINES?

Overview: other applications of coroutines

= Use coroutines as an alternative to threads

= Use coroutines in embedded software

= Coroutine use in other programming languages (Python, C#, ...) (1 slide, 1 example)
= Completion on another thread

= Local event loop

= CORBA: synchronous — callback — polling — coroutines

= Communicating finite state machines

WHY USE COROUTINES?

Python Liquid handler software

async def liquid handling sequence():
await lh.pick up tips(tip rack["Al:H1"])
await lh.aspirate(plate["A1:H1"],
vols=100,
flow rates=100,
end delay=0.5,
offsets=Coordinate(l, 2, 3)
)
await lh.dispense(plate["A2:H2"], vols=100)
await lh.return tips()
await asyncio.gather(
liquid handling sequence(),
backend.refill pump ()

PyLabRobot:
https://www.cell.com/device/pdf/S2666-9986(23)00170-9.pdf
https://www.biorxiv.org/content/10.1101/2023.07.10.547733v1 full.pdf
https://github.com/PylLabRobot/pylabrobot

)

« Each of the 4 steps (tip pick up, aspirate,
dispense, tip return) take a few seconds.

« While waiting for a step to complete, the
async procedure does not block the rest
of the application.

Johan Vanslembrouck | Meeting C++ 2025 Public © Capgemini 2025. All rights reserved | 92

https://www.cell.com/device/pdf/S2666-9986(23)00170-9.pdf
https://www.cell.com/device/pdf/S2666-9986(23)00170-9.pdf
https://www.cell.com/device/pdf/S2666-9986(23)00170-9.pdf
https://www.cell.com/device/pdf/S2666-9986(23)00170-9.pdf
https://www.cell.com/device/pdf/S2666-9986(23)00170-9.pdf
https://www.cell.com/device/pdf/S2666-9986(23)00170-9.pdf
https://www.biorxiv.org/content/10.1101/2023.07.10.547733v1.full.pdf
https://www.biorxiv.org/content/10.1101/2023.07.10.547733v1.full.pdf
https://github.com/PyLabRobot/pylabrobot
https://github.com/PyLabRobot/pylabrobot

WHY USE COROUTINES?

Overview: other uses of coroutines

= As an alternative to threads

= |In embedded software

= |n other programming languages (Python, C#, ...)

= Completion on another thread (8 slides, 3 examples)
= Local event loop

= CORBA: synchronous — callback — polling — coroutines
= Communicating finite state machines

WHY USE COROUTINES?

Completion on another thread (1/8): example without coroutines

class RemoteObjectlThr

{

public:
void opl(int inl, int in2, inté& outl, inté& out2, int& retl, std::latché& latch)

}s

int functionl (int inl, int

{

{

m remoteObject.startthr opl(inl, inZ2,
[this, &latch , &outl, &out2, &retl] (int outla, int outZa, int retla)

{

outl = outla;
out?2 = outla; °
retl = retla;

latch .count down() ;

})

std::latch mainLatch{
remoteObjlthr.opl (inl,
remoteObjlthr.opl (inl,
remoteObjlthr.opl (inl,
mainLatch.wait () ;

in2)

}; °
in2, outll, outl2, retl, mainLatch);
in2, out2l, out22, ret2, mainLatch);
in2, out31l, out32, ret3, mainLatch);

int result = retl + ret2 + ret3;

return result;

The completion handler (lambda) runs on a
dedicated thread and notifies the main thread
using a C++20 std::latch.

The programming style is sequential,
although we use an asynchronous API.

However, function1 blocks the main thread
until all 3 responses have arrived.

WHY USE COROUTINES?

Completion on another thread (2/8): example with coroutines

class RemoteObjectlCo : public CommService
{
public:
async_task<int> opl(int inl, int in2, int& outl, inté& out2)
{
async operation<opl ret t> opl = start opl(inl, in2);
opl ret t res = co_await opl;
outl = res.outl;
out2 = res.out2;
co_return res.ret;

}s

async_task<int> coroutinel (int inl, int in2)
{

printf("Class0l::coroutinel ()\n");

int outll = -1, outl2 = -1;
int out2l1 = -1, out22 = -1;
int out31l = -1, out32 = -1;

async task<int> opl = remoteObjlco.opl(inl, in2, outll, outl2);
async_task<int> op2 remoteObj2co.opl(inl, in2, out2l, out22);
async_ task<int> op3 remoteObj3co.opl(inl, in2, out31l, out32);

when all wa(opl, op2, op3);

co_await wa;

int result = opl.get result() + op2.get result() + op3.get result();
co_return result;

Blocking problem has been solved
using coroutines.

There is no need for completion on
another thread.

WHY USE COROUTINES?

Completion on another thread (3/8): gRPC example 1: original example without coroutines

std::string SayHello(const std::string& user) {

}

HelloRequest request;
request.set name (user);
HelloReply reply;
ClientContext context;
std: :mutex mu;
std::condition variable cv;
bool done = false;
Status status;
print (PRI1, "SayHello: pre\n'");
stub ->async()->SayHello (&context, &request, é&reply,
[&mu, &cv, &done, &status] (Status s) {
status = std::move(s);
std::lock guard<std::mutex> lock(mu) ;
done = true;
cv.notify one();// looks like handle.resume() ®

})

std::unique lock<std::mutex> lock(mu) ;
while (!'done) { (]
cv.wait (lock) ; // looks like a co_await

}
if (status.ok()) {

return reply.message () ;
} else {

return "RPC failed";

}

The completion handler (lambda) runs on a
dedicated thread and notifies the main thread
using a condition variable.

The programming style is sequential,
although we use an asynchronous API.

The thread on which SayHello runs is blocked
until the response has arrived.

WHY USE COROUTINES?

Completion on another thread (4/8): gRPC example 1: example with coroutines

async operation<Status> start SayHello(ClientContext* pcontext,
HelloRequesté& request,
HelloReply& reply) {
int index = get free index();
async_operation<Status> ret{ this, index };
stub ->async()->SayHello(pcontext, &request, &reply,
[index, this] (Status s) {
Status status = std::move(s);
completionHandler<Status>(index, status);
})

return ret;

}

async_task<std::string> SayHelloCo(const std::stringé& user) {
HelloRequest request;
request.set name (user);
HelloReply reply;
ClientContext context;
Status status;
status = co_await start SayHello(&context, request, reply);
if (status.ok()) {
co_return reply.message();
}
else {
co_return "RPC failed";

}

WHY USE COROUTINES?

Completion on another thread (5/8): gRPC example 2: original example without coroutines

// Request to a Greeter service
hello request.set name("user");
helloworld::Greeter: :NewStub (channel)->async()->SayHello (
&hello context, &hello request, &hello response,
[&] (Status status) {
std::lock guard<std::mutex> lock(mu) ;
done count++;
hello status = std::move(status);
cv.notify all(); // looks like handle.resume ()
}) s
// Request to a RouteGuide service
feature request.set latitude(50);
feature request.set longitude(100);
routeguide: :RouteGuide: :NewStub (channel)->async()->GetFeature (
&feature context, &feature request, &feature response,
[&] (Status status) {
std::lock guard<std::mutex> lock(mu) ;
done count++;
feature status = std::move(status);
cv.notify all(); // looks like handle.resume ()
b
// Wait for both requests to finish

cv.wait (lock, [&]() { return done count == ”7; }); // looks like co await when all

if (hello status.ok()) {
/] ...

}
if (feature status.ok()) {

/]
}

Starting two asynchronous operations
one after the other.

Waiting until both have finished.

WHY USE COROUTINES?

Completion on another thread (6/8): gRPC example 2: example with coroutines

async operation<Status> start GetFeature(ClientContext* pcontext, routeguide::Pointé& request,
routeguide: :Featureé& reply) {
int index = get free index();
async operation<Status> ret{ this, index };
routeguide: :RouteGuide: :NewStub (channel)->async()->GetFeature (pcontext, &request, &reply,
[index, this] (Status s) {
Status status = std::move(s);
completionHandler<Status>(index, status);
b
return ret;
}
async task<std::string> GetFeatureCo() {
// Code removed to save some space
Status feature status =
co_await start GetFeature(&feature context, feature request, feature response);
std::stringstream strstr;
// Code removed to save some space
co_return strstr.str();
}
async_task<void> SayHello GetFeatureCo when all() {
async task<std::string> tl = SayHelloCo() ;
async_task<std::string> t2 = GetFeatureCo();
co_await when all(tl, t2);
std::cout << tl.get result();
std::cout << t2.get result();
co_return;

WHY USE COROUTINES?
Completion on another thread (7/8): comparison and conclusions

= The original examples and the coroutine examples both have a sequential programming style.

= |n the non-coroutine examples, the function that calls cv.wait(...) (or an equivalent synchronization primitive) is
(usually) blocked and blocks (recursively) its calling function(s).

» This is not the case with coroutines: when a coroutine suspends, it passes control to its caller / resumer.

= A solution is to run the top-level function on a dedicated thread (e.g., one thread for every received event).
= Comparison (see table below):

Action | Using threads

waiting cv.wait(lock); co_await ...;

continuation cv.notify_one(); handle.resume();

WHY USE COROUTINES?

Completion on another thread (8/8): source code

Example:
= Without coroutines: p1200thr.h, p1515-async+thread-3-parallel-rmis.cpp

= With coroutines: p1200co.h, p1520-coroutines-3-parallel-rmis.cpp
gRPC example 1:

= Original example without coroutines: greeter callback client.cc

= With coroutines: greeter cb coroutine client2.cc

gRPC example 2:
= Original example without coroutines: multiplex client2.cc

= With coroutines: multiplex coroutine client3-when all.cc

https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1200thr.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1515-async%2Bthread-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1515-async%2Bthread-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1515-async%2Bthread-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1515-async%2Bthread-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1515-async%2Bthread-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1515-async%2Bthread-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1515-async%2Bthread-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1515-async%2Bthread-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1515-async%2Bthread-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1200co.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1520-coroutines-3-parallel-rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/grpc/cpp/helloworld/greeter_callback_client.cc
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/grpc/cpp/helloworld/greeter_cb_coroutine_client2
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/grpc/cpp/multiplex/multiplex_client2.cc
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/grpc/cpp/multiplex/multiplex_coroutine_client3-when_all.cc
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/grpc/cpp/multiplex/multiplex_coroutine_client3-when_all.cc
https://github.com/JohanVanslembrouck/corolib/blob/master/examples/grpc/cpp/multiplex/multiplex_coroutine_client3-when_all.cc

WHY USE COROUTINES?

Overview: other uses of coroutines

= As an alternative to threads (2 examples)

= In embedded software

= |n other programming languages (Python, C#, ...)

= Completion on another thread

= Local event loop (3 slides)

= CORBA: synchronous — callback — polling — coroutines
= Communicating finite state machines

WHY USE COROUTINES?

Local event loop (1/3): without coroutines

void functionl (int inl, int in2, int testval, int& lret)

{

int lretl = -1;
remoteObjl.sendc opl(inl, in2,
[this, &lretl] (int outl, int out2, int retl) {
lretl = this->callbackl (outl, out2, retl);
});
// la Do some stuff that doesn't need the result of the RMI
eventQueue.run() ;
// 1b Do stuff that needs the result of the RMI
if (lretl == testval) {
remoteObj2.sendc op2(inl, in2,
[this, &lret] (int outl, int retl) {
lret = this->callback2(outl, retl);
});
// 2a Do some stuff that doesn't need the result of the RMI
eventQueue.run() ;
// 2b Do stuff that needs the result of the RMI
}
else {
remoteObj3.sendc op3(inl,
[this, &lret] (int outl, int out2, int retl) {
lret = this->callback3(outl, out2, retl);
}) s
// 3a Do some stuff that doesn't need the result of the RMI
eventQueue.run() ;
// 3b Do stuff that needs the result of the RMI

The completion handler (lambda) runs on the
same thread.

The programming style is sequential,
although we use an asynchronous API.

The thread on which function1 runs is
blocked inside eventQueue.run() until the
response has arrived.

WHY USE COROUTINES?

Local event loop (2/3): with coroutines

async_task<int> coroutinela(int inl, int in2, int testval)

{
int outl = -1, out2 =
async_task<int> opl =

remoteObjlco.opl (inl,

in2, outl, out2);

that doesn't need the result of the RMI

needs the result of the RMI

// la Do some stuff

int retl = co_await opl;

// 1lb Do stuff that

if (retl == testval) {
int out3 = -1;

async_task<int> op2
// 2a Do some stuff
int ret2 = co _await
// 2b Do stuff that
co_return ret2;

}

else {
int out4 = -1, outb
async_task<int> op3
// 3a Do some stuff
int ret3 = co_await
// 3b Do stuff that
co_return ret3;

}

= remoteObj2co.op2(inl, in2, out3);
that doesn't need the result of the RMI
op2;

needs the result of the RMI

= =1;

= remoteObj3co.op3(inl, outd, outh);
that doesn't need the result of the RMI
op3;

needs the result of the RMI

@

WHY USE COROUTINES?

Local event loop (3/3): discussion and source code

= Both pieces of code use an asynchronous APl and have a very similar structure, but the control flow is different.

= The code not using coroutines blocks the function and its calling functions, while the coroutine passes control to
its caller (or resumer) and enters eventually a global event loop.

= The non-coroutine code is used in CORBA AMI (Common Object Request Broker Architecture - Asynchronous
Method Invocation), callback variant.

» The polling variant is similar but hides the local event loop in the polling function.
= The local event loop should only accept the response corresponding to the sent request.
* It should defer all other events.
* These events will be handled by the global event loop (that will be entered after leaving the function).

= Source code: without coroutines: p1212-async-3rmis-local-event-loop.cpp

= Source code: with coroutines: p1220-coroutines-3rmis.cpp, p1222-coroutines-3rmis-generichandler.cpp

https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1212-async-3rmis-local-event-loop.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1220-coroutines-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1220-coroutines-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1220-coroutines-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1220-coroutines-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1220-coroutines-3rmis.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1222-coroutines-3rmis-generichandler.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1222-coroutines-3rmis-generichandler.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1222-coroutines-3rmis-generichandler.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1222-coroutines-3rmis-generichandler.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1222-coroutines-3rmis-generichandler.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1222-coroutines-3rmis-generichandler.cpp
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/why-coroutines/p1222-coroutines-3rmis-generichandler.cpp

4

WHY USE COROUTINES?

Completion on another thread versus local event loop versus coroutines

Completion on another | Local event loop Coroutines
thread

Asynchronous APl used? Yes

Synchronous / sequential Yes Yes Yes

programming style?

Completion handler runs A dedicated thread Same thread Dedicated or same

on thread

“await” realized by Thread synchronization Local event loop co_await
mechanisms

Awaiting function Yes Yes No

blocked?

Real-world use case gRPC CORBA AMI All

WHY USE COROUTINES?

= As an alternative to threads

= |In embedded software

= |[n other programming languages (Python, C#, ...)

= Completion on another thread

= Local event loop

= CORBA: synchronous — callback — polling — coroutines (2 slides)
= Communicating finite state machines

WHY USE COROUTINES?

CORBA: synchronous - callback - polling — coroutines (1/2)

void synchronousl ()

{
CORBA::Long inl = 1;
CORBA: :Double inoutl = 1;
CORBA: :Short outl = 0;
CORBA: :Short retl;

retl = interfaceAObj.operationl(inl, inoutl, outl);
printf("retl = %d, inoutl = %f, outl = %d\n", retl, inoutl,

void asynchronous callbackl ()
{
CORBA::Long inl = 1;
CORBA: :Double inoutl = 1;
CORBA: :Short outl = 0;
CORBA: :Short retl = 0;

interfaceAHandler impl ptr handler = new interfaceAHandler impl;

interfaceAObj.sendc_operationl (handler, inl, inoutl);
eventqueue.run() ;
if (handler->finished()) {
handler->operationl (retl, inoutl, outl);
printf("retl = %d, inoutl = %f, outl = %d\n",
retl, inoutl, outl);

}
delete handler;

outl) ;

async_task<void> coroutinel ()

{
CORBA::Long inl = 1;
CORBA: :Double inoutl = 1;
async_operation<operationl result> a =
interfaceACoObj.start operationl(inl, inoutl);
operationl result result = co_await a;
printf("retl = %d, inoutl = %f, outl = %d\n",
result.m ret val, result.m inout val, result.m out val);
co_return;
}
void asynchronous pollingl ()
{
CORBA::Long inl = 1;
CORBA: :Double inoutl = 1;
CORBA: :Short outl = 0;
CORBA: :Short retl = 0;
PollerID pollerId;
CORBA: :Boolean completed = false;
CORBA: :Boolean blocking = false;
pollerId = interfaceAObj.sendp operationl(inl, inoutl);
while ('completed)
completed = interfaceAObj.operationlPoller (
pollerId, blocking, retl, inoutl, outl);
printf("retl = %d, inoutl = %f, outl = %d\n", retl, inoutl,
}

WHY USE COROUTINES?

CORBA: synchronous - callback - polling — coroutines (2/2)

= CORBA: Common Object Request Broker Architecture
= Source code: corba_client_app.cpp

= Also contains examples with operations placed in a loop (or two loops) and the use of when_all and when_any.

https://github.com/JohanVanslembrouck/corolib/blob/master/studies/corba/corba_client_app.cpp

WHY USE COROUTINES?

Overview: other uses of coroutines

= As an alternative to threads

= |In embedded software

= |n other programming languages (Python, C#, ...)

= Completion on another thread

= Local event loop

= CORBA: synchronous — callback — polling — coroutines
= Communicating finite state machines (5 slides)

WHY USE COROUTINES?

Communicating finite state machines (1/5)

= Real-world application: communication protocols with two (or more) parties.
Original system
= Consider a system of processes communicating using message passing.
= A process is organized as a state machine using a double selection:
* Quter selection on state
* Inner selection on message (id)
» Or vice-versa, or both if the programming language allows this or you can concatenate state and message id.

= A process uses a potentially infinite loop.

= At the “top” of the loop, it waits on incoming messages and then enters the state machine, depending on the
state and the message id.

= The state machine does not block/wait on the response on messages it has sent: the response message will
be handled by the event loop.

= See below for code fragment.

WHY USE COROUTINES?

Communicating finite state machines (2/5)

Compiling C++ coroutines to pre-C++20 code

= A C++ computer typically compiles each coroutine as a state machine.

= At the first coroutine call, the code enters the compiled coroutine at the top.
= Each suspend/resume point corresponds to a different state (id).

= On re-entry of the coroutine (due to a resume), the coroutine jumps to the resume point indicated by the
current state.

Coroutine alternative to CFSMs
= Each process can be rewritten using coroutines using a single “global” event loop.
= A new request leads to calling a dedicated coroutine.
* In the original code, the same state machine is/can be used. Coroutines will have to “communicate” using variables.
= Sending a request from that coroutine corresponds to invoking an asynchronous operation.
= Waiting for the response message to that request corresponds to co_await-ing the response message.
= Subsequent requests/responses can be handled by the same coroutine.

WHY USE COROUTINES?

Finite state machines Corolib coroutine

k{’OOI process_message () async_task<void> mainflow ()
MessageIld msgidl = m message queuel.get().value or(MessageId::NullMsg); {
if (msgidl == MessageId::NullMsgq) co_await start operationl();

return false;

co await start operation2 (4);
switch (m state) { - -

case State::Statel: co—:l:'etl‘.l]:'n’.
switch (msgidl) { }
case Messageld: :Message0O0l req:
m message_queuel.push(Messageld::MessagelOl req); :
m state = State::State2; bool process message (async_task<void>& tl)
break; {
default: MessagelId msgidl = m message queuel.get () .value or(MessageId::Nul
, break; if (msgidl == MessageId::NullMsq)
break ; return false;
case State::State2:
switch (msgidl) { if (msgidl == Messageld::Message(001l req) {
case Messageld::MessagelOl resp: _ . . —
m _message_queuel.push(Messageld: :Messagel02 req); tl majllflcwv()'
m_state = State::State3; }
break; else
defal‘:rl:a:k. m messagemapper.find(msgidl) ;
} ! return true;
break; }

case State::State3:
// Some lines deleted to save some space
break;

default:
break;

}

return true;

WHY USE COROUTINES?

Dynamic C: state machine

tasklstate = 1; // initialization:
while (1) {
switch (tasklstate) {
case 1:
if (buttonpushed()) {
tasklstate=2; turnondevicel () ;
timerl = time; // time incremented every second
}
break;
case 2:
if((time-timerl) >= 60L) {
tasklstate=3; turnondevice?2 () ;

timer2=time;
}

break;

case 3:
if((time-timer2) >= 60L) {
tasklstate=1; turnoffdevicel () ;
turnoffdevice2 () ;
}
break;
}
/* other tasks or state machines */
}

Johan Vanslembrouck | Meeting C++ 2025

Dynamic C: cofunctions

while (1) {
costate{ ... } // task 1
costate{ // task 2

waitfor (buttonpushed()):
turnondevicel () ;

waitfor (DelaySec (60L))
turnondevice2 () ;

waitfor (DelaySec (60L))
turnoffdevicel () ;
turnoffdevice2 () ;

}

costate{ ... } // task n

Source:
https://hub.digi.com/dp/path=/support/asset/dy

namic-c-9-users-manual-rabbit-2000-and-

3000-microprocessors/

Public © Capgemini 2025. All rights reserved | 114

https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/
https://hub.digi.com/dp/path=/support/asset/dynamic-c-9-users-manual-rabbit-2000-and-3000-microprocessors/

WHY USE COROUTINES?

Communicating finite state machines (5/5)

Source code:
= FSM (no coroutines): p1000-cfsm1.h
= With coroutines: p1010-cfsm1-co.h, p1012-cfsm1-co.h, p1014-cfsm1-co.h

Johan Vanslembrouck | Meeting C++ 2025 Public © Capgemini 2025. All rights reserved | 115

https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1000-cfsm1.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1000-cfsm1.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1000-cfsm1.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1010-cfsm1-co.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1010-cfsm1-co.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1010-cfsm1-co.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1010-cfsm1-co.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1010-cfsm1-co.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1012-cfsm1-co.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1012-cfsm1-co.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1012-cfsm1-co.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1012-cfsm1-co.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1012-cfsm1-co.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1014-cfsm1-co.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1014-cfsm1-co.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1014-cfsm1-co.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1014-cfsm1-co.h
https://github.com/JohanVanslembrouck/corolib/blob/master/studies/cfsms/p1014-cfsm1-co.h

AGENDA

1. Brief introduction to C++ coroutines

2. Brief introduction to (a)synchronous distributed programming

3. Why use coroutines for asynchronous (distributed) programming?
4. When not to use coroutines? (3 slides)

When all you need is a function

In simple applications where blocking is not harmful

When there is no asynchronous |/O API

In batch processing applications

In long running algorithms with little user interaction

o ok b~

In publish/subscribe applications
5. Summary and conclusions
6. Appendix: brief introduction to corolib

WHEN NOT TO USE COROUTINES?

Examples 1 + 2

= [ntroduction: the C++ compiler generates a lot of code for coroutines (compared to ordinary functions).
 Likewise, you should not use virtual functions if you can do with non-virtual functions.

 Virtual functions have 3 to 4 indirections (pointer to object, location of vptr (if not at the beginning of the object), pointer to
virtual function table, pointer to function).

= |f you just need a function.
* The leaf coroutines in a call tree must co_await an awaitable object instead of just calling co_return.
* And the awaitable object cannot provide the response immediately.

* In the case of just co_return, the coroutine will behave as a function: no suspend-resume involves (when using eager start
coroutines).

= |n simple applications that have nothing else to do than to wait for a response.
* If no response arrives (in time), <CTRL>+C is an acceptable option.

WHEN NOT TO USE COROUTINES?

Examples 3 +4

= When there is no asynchronous /O API
* Run synchronous operations on a dedicated thread to avoid blocking the main thread.

In an application | developed in 1999, there were 18 threads (19 when run as a Windows service).

Most threads were controlling equipment connected to a serial bus (RS485 / RS422): one thread per bus.

Communication with the equipment used synchronous writes and reads (the application was the “master”).

Although it would be relatively easy to replace all threads by coroutines, the first step would be to replace the synchronous
calls by asynchronous calls. This first step would probably take most of the development time.

= |[n batch processing jobs
* Read information from an input file, process that information, write result to one or more output files.
» Repeat this process for other input files.

WHEN NOT TO USE COROUTINES?

Examples 5 + 6

= |n long running algorithms with little user interaction
» Consider a calibration or tuning algorithm that runs for many seconds (even tens of seconds).
« While this algorithm is running, there is little that a user can do, apart from querying the state or stopping the algorithm.
» The algorithm can run on a separate thread and use only synchronous I/O.

* The user thread can accept user input at any time and communicate with the auxiliary thread using a simple queue or
shared variables.

= Publish/subscribe applications
* Publishers publish information to a topic.

Subscribers subscribe to a topic and consume the published information.

A publisher does not know its subscribers (if any), a subscriber does not know its publishers (if any).

Produce and consume times are or may be unrelated.
However, if also RPC is supported (built on top of the pub/sub infrastructure), then coroutines come into scope again.

— Example: ROS actions.

AGENDA

O gk b~

Brief introduction to C++ coroutines

Brief introduction to (a)synchronous programming
Why use coroutines for asynchronous programming?
When not to use coroutines?

Summary and conclusions (4 slides)

Appendix: brief introduction to corolib

4

SUMMARY AND CONCLUSIONS

Comparison

= We can use coroutines to make a synchronous-style / single-threaded program behave like an asynchronous /
multi-threaded program without making structural modifications to the original program!

= The table below compares 4 styles in the absence of coroutines.
= Coroutines combine the advantages (+) without the disadvantages (-)

_ single-threaded multi-threaded

synchronous (+) Very easy to develop and maintain (+) Easy to develop and maintain (depends on the

(-) Not reactive number of threads and inter-thread communication)
(+) Reactive

-) Thread (communication) overhead

-) Shared variables, ...

) More difficult to develop and maintain
+) Reactive
-) There is no need to combine both mechanisms

(
(
asynchronous (-) More difficult to develop and maintain (
(+) Reactive (

(

SUMMARY AND CONCLUSIONS

Transformation from synchronous to asynchronous and to coroutines

synchronous application

1. use asynchronous APl (e.g. async_read instead of read)

2. use co_await and co_retum 2_ split code into non-blocking functions
3. replace return type TYPE with task=TYPE= 3. stifch them together using a chain of callback funclions

4. move content of the callback functions to the coroutines
5. use a completion handler to resume the coroutine
at the lowest level

Johan Vanslembrouck | Meeting C++ 2025 Public © Capgemini 2025. All rights reserved | 122

SUMMARY AND CONCLUSIONS

Coroutines can be used ...

= to write distributed applications using a synchronous style yet executing/behaving in an efficient reactive
asynchronous way

« Coroutines offer the advantages of both styles while not introducing any new major disadvantages.
= as an alternative to threads
» Several coroutines can run in an interleaved/cooperative way on a single operating system thread.
« Coroutines can avoid or reduce the use of threads.
= for lazily computed sequences (generators)
* Not discussed in this presentation.

SUMMARY AND CONCLUSIONS

Conclusions

= Coroutines are very useful to write distributed (and many other types of) applications.

» There is a minimal impact on the original algorithms/specifications: there is no need to cut the algorithm into a chain of
callback functions.

= Coroutines can lead to a more uniform coding style among different types of applications:
- Stand-alone applications performing long-running/complex algorithms
« Distributed applications with communicating processes
* Reactive real-time and embedded applications

AGENDA

o 0k w0~

Brief introduction to C++ coroutines

Brief introduction to (a)synchronous programming
Why use coroutines for asynchronous programming?
When can you avoid using coroutines?

Summary and conclusions

Appendix: brief introduction to corolib (4 slides)

APPENDIX: BRIEF INTRODUCTION TO COROLIB

Organization of corolib (https://github.com/JohanVanslembrouck/corolib)

ent icat icati I application layer
- - o (OS independent)

'C++ coroutine library coroutine library layer

wrapper / adaptation
layer

proprietary asynchronous communication
Boost ASIO gRPC libevent async /O _middleware layer
e — (available on one or multiple
08Ss)
Linux macOS Windows bare metal opersing Systems layer
(including communication stacks)

Johan Vanslembrouck | Meeting C++ 2025 Public © Capgemini 2025. All rights reserved | 126

APPENDIX: BRIEF INTRODUCTION TO COROLIB

Directory structure (1/2)

corolib
— docs

— examples

|— boost (uses Boost ASIO, but not the Boost coroutine implementation)

|— cppcoro (integration of the coroutine library of Lewis Baker)

F—— curl

F—— grpc

F—— libevent
F—— gtb

F—— ros2 Wws
F—— tao

L — tutorial (does not use any communication framework)

APPENDIX: BRIEF INTRODUCTION TO COROLIB

Directory structure (2/2)
|— include

| L— corolib (header files of the coroutine library)
— 1ib (.cpp files for the .h files in include/corolib)

— studies

— cfsms (contains source code used in this presentation)

— corba

|

|

| |— corolab (contains the (somewhat modified) code of the 2020 presentation)
| |— final suspend

| |— initial suspend
| — rvo

|

|

|

|— transform

|— why—-coroutines (contains source code used in this presentation)
L why-coroutines2 (contains source code used in this presentation)

L tests (uses GoogleTest)

https://becpp.org/blog/wp-content/uploads/2020/02/Johan-Vanslembrouck-Coroutines-in-C20.zip

APPENDIX: BRIEF INTRODUCTION TO COROLIB
Notes

= Hobby project
» Developed in my free time or between client projects.
* First commit to GitHub in June 2020.
= Two main classes:
- async_task (eager start) or async_ltask (lazy start)
* async_operation
= corolib classes have been tested in numerous examples (with and without communication frameworks)
= Current status and future work:
+ Some data members of the main classes are not used or needed in all contexts.

» A split into smaller classes could be beneficial to improve performance: only use data and code you need in any given
context.

Thank you!

	Default Section
	Slide 1: Why use coroutines FOR asynchronous applications?
	Slide 2: Why use coroutines for asynchronous applications?
	Slide 3: Why use coroutines for asynchronous applications?
	Slide 4: Why use coroutines for asynchronous applications?
	Slide 5: Why use coroutines for asynchronous applications?
	Slide 6: biography
	Slide 7: Introduction
	Slide 8: Agenda
	Slide 9: Agenda
	Slide 10: Introduction to C++ Coroutines
	Slide 11: Introduction to C++ Coroutines
	Slide 12: Introduction to C++ Coroutines
	Slide 13: Introduction to C++ Coroutines
	Slide 14: Introduction to C++ Coroutines
	Slide 15: Introduction to C++ Coroutines
	Slide 16: Introduction to C++ Coroutines
	Slide 17: Introduction to C++ Coroutines
	Slide 18: Introduction to C++ Coroutines
	Slide 19: Introduction to C++ Coroutines
	Slide 20: Introduction to C++ Coroutines
	Slide 21: Introduction to C++ Coroutines
	Slide 22: Introduction to C++ Coroutines
	Slide 23: Introduction to C++ Coroutines
	Slide 24: agenda
	Slide 25: a)synchronous programming / applications
	Slide 26: (a)synchronous programming / applications
	Slide 27: (a)synchronous programming / applications
	Slide 28: (a)synchronous programming / applications
	Slide 29: agenda
	Slide 30: Why use coroutines?
	Slide 31: Why use coroutines?
	Slide 32: Why use coroutines?
	Slide 33: Why use coroutines?
	Slide 34: Why use coroutines?
	Slide 35: Why use coroutines?
	Slide 36: Why use coroutines?
	Slide 37: Why use coroutines?
	Slide 38: Why use coroutines?
	Slide 39: Why use coroutines?
	Slide 40: Why use coroutines?
	Slide 41: Why use coroutines?
	Slide 42: Why use coroutines?
	Slide 43: Why use coroutines?
	Slide 44: Why use coroutines?
	Slide 45: Why use coroutines?
	Slide 46: Why use coroutines?
	Slide 47: Why use coroutines?
	Slide 48: Why use coroutines?
	Slide 49: Why use coroutines?
	Slide 50: Why use coroutines?
	Slide 51: Why use coroutines?
	Slide 52: Why use coroutines?
	Slide 53: Why use coroutines?
	Slide 54: Why use coroutines?
	Slide 55: Why use coroutines?
	Slide 56: Why use coroutines?
	Slide 57: Why use coroutines?
	Slide 58: Why use coroutines?
	Slide 59: Why use coroutines?
	Slide 60: Why use coroutines?
	Slide 61: Why use coroutines?
	Slide 62: Why use coroutines?
	Slide 63: Why use coroutines?
	Slide 64: Why use coroutines?
	Slide 65: Why use coroutines?
	Slide 66: Why use coroutines?
	Slide 67: Why use coroutines?
	Slide 68: Why use coroutines?
	Slide 69: Why use coroutines?
	Slide 70: Why use coroutines?
	Slide 71: Why use coroutines?
	Slide 72: Why use coroutines?
	Slide 73: Why use coroutines?
	Slide 74: Why use coroutines?
	Slide 75: Why use coroutines?
	Slide 76: Why use coroutines?
	Slide 77: Why use coroutines?
	Slide 78: Why use coroutines?
	Slide 79: Why use coroutines?
	Slide 80: Why use coroutines?
	Slide 81: Why use coroutines?
	Slide 82: Why use coroutines?
	Slide 83: Why use coroutines?
	Slide 84: Why use coroutines?
	Slide 85: Why use coroutines?
	Slide 86: Why use coroutines?
	Slide 87: Why use coroutines?
	Slide 88: Why use coroutines?
	Slide 89: Why use coroutines?
	Slide 90: Why use coroutines?
	Slide 91: Why use coroutines?
	Slide 92: Why use coroutines?
	Slide 93: Why use coroutines?
	Slide 94: Why use coroutines?
	Slide 95: Why use coroutines?
	Slide 96: Why use coroutines?
	Slide 97: Why use coroutines?
	Slide 98: Why use coroutines?
	Slide 99: Why use coroutines?
	Slide 100: Why use coroutines?
	Slide 101: Why use coroutines?
	Slide 102: Why use coroutines?
	Slide 103: Why use coroutines?
	Slide 104: Why use coroutines?
	Slide 105: Why use coroutines?
	Slide 106: Why use coroutines?
	Slide 107: Why use coroutines?
	Slide 108: Why use coroutines?
	Slide 109: Why use coroutines?
	Slide 110: Why use coroutines?
	Slide 111: Why use coroutines?
	Slide 112: Why use coroutines?
	Slide 113: Why use coroutines?
	Slide 114: Why use coroutines?
	Slide 115: Why use coroutines?
	Slide 116: agenda
	Slide 117: When not to use coroutines?
	Slide 118: When not to use coroutines?
	Slide 119: When not to use coroutines?
	Slide 120: agenda
	Slide 121: Summary and Conclusions
	Slide 122: Summary and Conclusions
	Slide 123: Summary and conclusions

	Untitled Section
	Slide 124: Summary and Conclusions
	Slide 125: Agenda
	Slide 126: Appendix: brief introduction to corolib
	Slide 127: Appendix: brief introduction to corolib
	Slide 128: Appendix: brief introduction to corolib
	Slide 129: Appendix: brief introduction to corolib
	Slide 130

