l 100 BC
Meeting C++ 2025-11-06
Marc Mutz <marc.mutz@aqt.io>
Development 1

About Marc Mutz

* Principal Software Engineer at The Qt Company

* For the purposes of this talk:
— The guy that annoys other Qt devs in API / ABI reviews

= In particular, not an expert in this topic

* just more experienced than most devs in these matters

Development

About This Talk

* |f you need definite answers, talk to your vendor

* QOut of Scope are:
— C++20 Modules
— Linker Scripts
— Static Linking

— Combining different compiler-vendors, -versions, or -flags
Development

Overview

* Motivating Example

* Definitions

* Alook at the KDE BC Page
* Techniques

* Cheating

* Q&A

Development

Example

* Libv1.0
int scan(int fd);

* Libv1.1:

enum class Options { ~~~ };
int scan(int fd, Options opt = {});

Development

Example

* Libv1.1:

enum class Options { ~~~ };

int scan(int fd, Options opt ={}); 7 BiC
* Libv1.1p1:

int scan(int fd);
int scan(int fd, Options opt);

Development

Example

* Libv1.1p2:

#if LIB_REMOVED _SINCE(1, 1)
int scan(int fd);

fendif

int scan(int fd, Options opt = {});

Development

Definitions

Development

Definitions

* Qt/ KDE

* BC/SC

* ABI/ API

* forwards / backwards xC

* name mangling / exported symbols

Development

Definitions — Qt and KDE

* Qt: A cross-platform application development
framework written in C++

* KDE: A (Unix) Desktop Environment based on Qt

* Both promise BC and SC within major release cycles

Development A

Definitions — BC

“A library is binary compatible, if a program linked
dynamically to a former version of the library
continues running with newer versions of the
library without the need to recompile.”

— KDE BC wiki

Development

11

Definitions — BC

1

library
library

)

library
— KDE BC wiki

Development

Definitions — BC

1

program linked
dynamically

)

— KDE BC wiki

Development

Definitions — BC

1

to a former version
continues running with newer versions

n

— KDE BC wiki

Development

linked

14

Definitions — BC

1

without the need to recompile ”

— KDE BC wiki

Development

Definitions — BC

“A library is binary compatible, if a program linked
dynamically to a former version of the library
continues running with newer versions of the
library without the need to recompile.”

— KDE BC wiki

Development

16

Observations — BC

* BCis not defined (by KDE) for static linking
— Doesn't stop people from trying, though

* “Continues running” is vague

= "Still links" is just one (necessary) condition e j———

* Not sufficient. Also need “"behaviour compat”.

- Even a bugfix may break programs

Development

17

Observations — BC

* You don't need a library to talk about BC
— A type can be BC

— A function can be BC

* Alibrary is just the unit of shipment

— BCis a property of smaller units

Development

18

Definition — SC

“It a program needs to be recompiled to run with a
new version of a library but doesn't require any
further modifications, the library is source
compatible!

— KDE BC wiki

Development

19

Observations — SC

* Inline library code can be SiC, but usually not BiC

— Compiled into the library user

* Doesn't change when the library changes
* BC!=5C
— Adding a defaulted argument to a function: SC && !'BC

— Adding a new overload of a function: BC && !SC

Development

20

Definitions — ABI|

* Application Binary Interface
- "what the linker sees”
- "below C++"
- "mangled names”

— "exported symbols”

Development

21

Definitions — API

* Application Programming Interface
— "what the compiler sees”
- "defined by C++"
- "overloading” / "default arguments”

- "typedef”

Development

22

Definitions — backwards xC

* "“Normal” compat:

— Code compiled against o/d library running against new library

* Qt provides backwards BC / SC" in major releases

- 50—>5.15
- 6.0—>6.777

' see QUIP-6 for acceptable SC breaks

Development A

https://contribute.qt-project.org/quips/6

Definitions — forwards xC

* "Reversed” compat:

— Code compiled against new library running against o/d library

* Qt provides forwards BC / SC in minor releases
- 5,15.0 <= 5.15.19
- 6.8.0 < 6.8.777

Development

24

Definitions — Name Mangling

* Creates unigue names for overloaded functions

* Encodes things you can overload on:
— Name
* incl. any scopes ("FQN")
- signature (= number and type of arguments)

* Incl. template arguments
* Incl. cv- and I/rvalue qualifiers of member functions

Development

25

Definitions — Name Mangling

* Does notencode:
— Argument names and defaults, if any
- Argument top-level cv-qualifiers (except SunCC in its days)
— noexcept
— Access specifier (except MSV()
— Return type (except MSV()

Development

26

Definitions — Name Mangling

Conclusion:

— Change to name mangling inputs = ABI break

— (Change to non-inputs = BC

- Platform differences!

Development A

Definitions — Exported Symbols: C++

» extern linkage * static linkage

— other TUs can access — only this TU can access

. — duplicates remain
* needs declaration P

— duplicates not allowed * inline linkage

— other TUs can access

* needs definition

3 Deve — duplicates are merged
019 Development

28

Definitions — Exported Symbols: DSO

* Unix: callable from outside .so/.dylib by default
— inline (code copied into caller)

- extern (library code called)

* Windows: callable from outside .dll by default

- inline (code copied into caller)

Development

29

Definitions — Exported Symbols

* Exporting is reducing (Unix) / extending (Win) the
set of symbols callable from outside the DSO

- Windows: _ _declspec(dll{ex,im}port)

— Unix: -fvisibility=hidden +
__attribute_ _((visibility("default")))

Development A

Definitions — Exported Symbols

* These attributes need to differ between building
the library and building against the library

* Hidden behind macros

* Qt: QT _(MODULE)_EXPORT
— generated by CMake

Development

31

Definitions — Exported Symbols

* Types don't need exporting (are not symbols)

— "Exported Class” is just “export all members”
* class QT_CORE_EXPORT QObject { ~~~ };

* \/ariables and function do

- incl. vtable of polymorphic classes (unless inline)

Development

32

Definitions — Exported Symbols

* "Wholesale" exporting “the class” exports:

— all member functions

— all static data members (incl. vtable)

- inline functions also get exported(!)

* and, on Windows, the DLL-exported version called
- or not, if the optimizerinlinesit _(Y)_/

Development

33

Definitions — Exported Symbols

* "Wholesale” exporting “the class” is recursive:

— nested classes are “exported’, too

Development

34

Definitions — Exported Symbols

* “"Wholesale” exporting “the class” does not export:
— (hidden) friend functions
- non-static data members (not variables)
— member function templates

— nested class templates

Development

35

Definitions — Exported Symbols

Conclusion:
— You don't want to export inline symbols

— You'll want to selectively export extern symbols

* those that need to be called from outside the DSO

= You don't want to export an “inline” vtable

Development

“Golden Rules” Of Class Exporting

* Export polymorphic classes “wholesale”

— and define the dtor out-of-line (even if empty / = default)

* Do not "wholesale” export non-polymorphic classes

— Export individual functions / variables only

* e.g. notinlines, not privates (unless called from inline code)

Development

37

Definitions — Exported Symbols

* Exported symbols are part of the ABI

- incl. exported inlines (!)

* Non-exported symbols are not
- the fewer exported symbols, the fewer BC headaches

— exporting allows “library-private” symbols

Development

38

Note On Unexported Inline Symbols

* Linker deduplicates them only per executable

— each DLL, and the app, each get their own copy

— harmless for functions

* except their addresses differ

— surprising for variables

Development A

Note On Unexported Inline Symbols

* Solution: Aggressive DRY / SCARY

— low: extract such things into separate functions

- "pull” these functions “behind the ABI boundary”

* de-inline and export

Development

40

A Look at the KDE BC Page

* There are many do’s and don't’'s that we have no
time for today, let's peek at the page together:

Development

41

https://community.kde.org/Policies/Binary_Compatibility_Issues_With_C%2B%2B

Techniques

Development

Techniques

* plmpl

* reserved fields

* move semantics

* virtual functions / hooks

* inline namespaces

Development

Techniques — plmpl

* “Pointer to implementation” / "Compiler Firewall”

— class Private; Private* plmpl; /7 only data member

- externalizes all private state (and functions)

— private parts can vary independent of public iface

Development

44

Techniques — plmpl

* Field new’'ed up in ctors
— memory allocation (or pooling)
* mitigation: implicit sharing, base class reuse, ...

— Almost all member functions must be out-of-line

— Exceptions:

* move SMFs and swap()

Development

45

Techniques — plmpl

* Lots of gotchas:

— shallow const; back pointers; Base::plmpl reuse in
Derived

e See article series on Heise (DE) / -\Wmarc (EN) !

Development

https://www.heise.de/hintergrund/C-Vor-und-Nachteile-des-d-Zeiger-Idioms-Teil-2-1136104.html
https://marcmutz.wordpress.com/translated-articles/pimp-my-pimpl-reloaded/

Techniques — plmpl

Conclusion:
— Effectiveness: ++

— Runtime overhead: --

* Moves and swaps are cheap, though

Development

47

os — reserved fields

Techniqu

* Directly-embedded unused data members

= [[maybe_unused]] void* reserved = nullptr;

— unused bits in bit-fields

- [[maybe_unused]] uint reserved = 0U;

- explicit padding: [[...]] char padding_n[M] = {};

Development

48

Techniqu

os — reserved fields

* Fields need to be init'ed, even if unused

— use NSDM

— if inline coda

= 0U/nul

e inits, fie

ptr

d is already severely restricted

* e.g. 0 needs to be a valid value (or partially-formed)

— if inline code destroys, field must be trivially

destructible

Development

49

Techniques — reserved fields

* Construction and destruction must be out-of-line!

— copy SMFs, dtor, any custom ctor (incl. default ctor)

* Exceptions:

- move SMFs, swap() = inline

— delegating constructors — may be inline

Development

50

Techniques — reserved fields

Conclusion:

— Effectiveness: o

* Limited capacity (literally) for change

— Runtime overhead: +

* Pay only for what you use (almost)

Development

51

BC and Move Semantics

* Move SMFs should be fast — inline
* But they shouldn't break BC — out-of-line

* Conflict of interest?

Development

52

BC and Move Assignment

* Natural implementation of move-assignment can be inline:
- swap(this->m_data, other.m_data)
— plmpl and reserved field alike

- "valid, but unspecified”

* BUT: assignment doesn't destroy LHS
- OKif type holds only memory resources

- Alternative: move-and-swap (needs move ctor)

Development

53

BC and Move Constructor

* Natural implementation of the move constructor
can also be inline:

- m_data{std::exchange(other.m _data, OU/nullptr)}

Development 4

https://www.youtube.com/watch?v=9OQKZl7ha7g

BC and Move Constructor

* BUT: doesn’t work with smart_ptr
— Compiler wants to call data member dtor

— Doesn't need it, but breaks encapsulation!

— @ ISO C++: can we fix this?

* noexcept move ctors oughtn't call data member dtors

Development

55

BC and Move Constructor

* smart_ptr plmpl work-around

— Make the smart_ptr dtor call an out-of-line function
* |dea: call isn't emitted from move ctor
* Inside the library, compiler can inline said function

* No performance overhead

- BUT: MSVC LTCG doesn't play ball (see references)

Development

56

BC and Move Semantics

Conclusion:
- Move SMFs and swap() can (and ought to) be inline

= ISO C++ and / or MSVC may have some bugfixing to do

Development

57

Techniques — Virtual Hook

 Problem: can't add virtual function to a class

* Qt/QObject-specific work-around:
= non-virtual function calls impl slot through meta-object
— works, because the call is delivered via virtual function

— idea can be generalized, though

Development

58

Techniques — Virtual Hook

* Needs to have been thought of in advance:

protected:

virtual void virtual _hook(int id, void *args) const;

* Must have be overridden in every class

Development

59

Techniques — Virtual Hook

* New function: * Implin virtual_hook():
int pseudoVirtual(int arg) { if (id == ID) {
intargv[2] ={0, arg}; auto argy =
virtual _hook(ID, argv); static_cast<int*>(args);
return argv[0]; argv[0] = op(argv[1]);

} }

Development

60

Techniques — Virtual Hook

Conclusion:

— Good for isolated use

— Only for types that are already polymorphic
— Needs to be added ante hoc

— Hard-to-automate task when extending hierarchy

Development

61

T

* Type versioning at the C++ level

echniques — Inline Namespaces

* Libv1.0:
— struct S{intx, v, z; }; int foo(const S &);

* Libv1.1:
- struct S{intx, v, z; Flags f; }; int foo(const S &);

Development

62

Techniques — Inline Namespaces

inline namespace S_V1_0{
struct S{intx, v, z; };
}

int foo(const S &s):

Development

63

Techniques — Inline Namespaces

#wHRre-namespace S_V1_0{
struct S{intx, v, z; };
}
int foo(const S_V1_0:S &s); / unchanged!
inline namespace S_V1_1{
struct S{intx, v, z; Flags f = {}};
}

int foo(const S &s): 7/ new function!

Development

64

T

* Empowers users:

echniques — Inline Namespaces

- "live at HEAD": use unqualified S
- “pin old API": use S_V1_0:5 explicitly

— can even be mixed in the same TU

Development A

T

echniques — Inline Namespaces

* Combinatorical explosion in N-ary functions, N > 1:

- replace(String &, const String &, const String &); 7 8x

* Different components extend at different times
- need different namespaces
*V1_0—>5S_V1_0
- or lots of boilerplate
* importing all unchanged \V1_0 types into V1_1

Development

66

T

Conclusion:

echniques — Inline Namespaces

- Good for isolated use (e.g. Config struct)
— Quickly gets out of hand when used widely
— Needs to be added ante hoc

- Lots of hard-to-automate tasks on version bumps

Development

67

Cheating

Cheating

* Separating APl and ABI
* Removing functions from one, but not the other
* Qt's user-config'able, rolling BC window

* Bonus: inlining out-of-line functions

Development

69

Cheating — Observations

* Types don't exist in the ABI

— only as a collection of functions acting on them
— there is no “Point” in the ABI

— there's only the agreement of certain functions as to
type and location of Point's fields

Development

70

Cheating — Observations

* ABIl is maintained as long as
- (existing) memory layout doesn’t change

— (existing) functions are not removed

Development

71

Cheating — Example API vs. ABI

struct LIB_EXPORT Point {
INntm_x, m_y;
void setX(int x);
int x() const;

void setY(inty);

int y() const;

|3

Development

offsetof(Point:m _x) ==
offsetof(Point:m_y) == 4
Point_setX i();
Point_x_v();

Point_setY _i();

Point_v_v();

Cheating — Example Func Addition

struct LIB_EXPORT Point {
INntm_x, m_y;
void setX(int x);

int x() const:

void setY(inty);

int y() const;
void setY(long long v);
%

Development

offsetof(Point:m _x) ==
offsetof(Point:m_y) == 4
Point_setX i();
Point_x_v();

Point_setY _i();

Point_v_v();
Point_setY _ll();

73

Cheating — Example Func Addition

struct LIB_EXPORT Point { offsetof(Point:m_x) ==

intm_x, m_y; * offsetof(Point:m_y)==4

void setX(int x); * Point_setX_i();

int x() const; * Point_x_v();
#if O

void setY(int y); (oops)
frendif

int y() const; * Point_y_v();

void setY(long long v); * Point_setY_ll();

|3

Development

Cheating — Example Func Addition

struct LIB_EXPORT Point { * offsetof(Point:m_x) ==
intm_x, m_y; * offsetof(Point:m_y)==4
void setX(int x); * Point_setX_i();
int x() const; * Point_x_v();

#if MAGIC_REMOVED _API_ONLY
void setY(inty); * Point_setY_i();

frendif
int y() const; * Point_y_v();
void setY(long long v); * Point_setY_ll();

%

Development

Cheating — removed _api.cpp

/ point.cpp / removed_api.cpp

void Point::setY(long long i) { ftdefine MAGIC _REMOVED _API_ONLY 1
~~ #include "point.h”

}
void Point::setY(int i) {

P~~~ ~

Development

76

Cheating — removed _api.cpp

/ point.cpp / removed_api.cpp

void Point::setY(long long i) { ftdefine MAGIC _REMOVED _API_ONLY 1
~~ #include "point.h”

}

void-PeirEseb i void Point::setY(int i) {

—_— setY(static_cast<long long>(i)); / new overload
} }

Development

77

Cheating — REMOVED _SINCE

* That's all!

* You can get fancy and version the thing:
- API_REMOVED _SINCE(1, 1)

* You need this macro per-library
- so let your build system generate these

— but only one removed_api.cpp per library
Development

78

Cheating — REMOVED _SINCE

* more sophisticated symbol versioning exists

* REMOVED_SINCE's advantage is

— purely C++-based
* every C++ developer can understand how to apply it
* cross-platform

— works post-hoc

Development

79

Cheating — Homework

* Use REMOVED _SINCE() to remove noexcept from
an exported function again

— Think about syntax in header and removed _api.cpp

— Also think about semantics of removing noexcept

Development A

REMOVED SINCE — Cut-Off Version

* \What happens if | introduce a cut-off version X.Y?

- i.e. REMOVED SINCE() = O for all versions before X.Y

* | have just introduced a (user-config'able) cut-off
for the ABI zombie functions in my DSO

- |OW: a config'able, rolling BC window

Development

81

A Rolling BC Window

* Upper bound:

— The library version I'm building against

* Lower bound:

— Said cut-off version

* Qt's called -disable-deprecated-up-to

Development

82

Cheating — REMOVED _SINCE

* Biggest drawback is: doesn't work for virtuals

— necessary precondition not met:

* need to be able to add something to remove something else

— if it weren't for virtuals, Qt could stay two decades more on 6.x

* alternatively, Qt 7 could be BCwith Qt 6

Development

83

Key Take-Aways

1. ABI # API; both can vary inde

2. Qt has a user-config'able, rol

pendently

ing BC window

3. "Wholesale” exported classes and virtual

functions are big impediments to ABI evolution

Development

84

References

KDE BC page
* Marc Mutz - On removing functions from the API, but not the ABI — Qt development ML 2022-07-13
* Marc Mutz - Partially-formed Objects for fun and profit - Meeting C++ 2020

* Marc Mutz - Pimp My Pimpl — Heise Developer 2010
- English Translation thereof
* Discussion about MSVC LTCG bug in Qt bug tracker
- Stack Overflow discussion: “Where does the destructor hide in this code?”
* QUIP-6: Acceptable Source-Incompatible Changes
* Marc Mutz — Fun With Exceptions - -Wmarc 2010-08-04
* (Qtdocumentation: QT _DISABLE _DEPRECATED _UP_TO

Development

https://community.kde.org/Policies/Binary_Compatibility_Issues_With_C%2B%2B
https://lists.qt-project.org/pipermail/development/2022-July/042727.html
https://www.youtube.com/watch?v=9OQKZl7ha7g
https://www.heise.de/hintergrund/C-Vor-und-Nachteile-des-d-Zeiger-Idioms-Teil-2-1136104.html
https://marcmutz.wordpress.com/translated-articles/pimp-my-pimpl-reloaded/
https://bugreports.qt.io/browse/QTBUG-133494
https://stackoverflow.com/questions/9417477/where-does-the-destructor-hide-in-this-code
https://contribute.qt-project.org/quips/6
https://marcmutz.wordpress.com/2010/08/04/fun-with-exceptions/
https://doc.qt.io/qt-6/qtdeprecationmarkers.html#QT_DISABLE_DEPRECATED_UP_TO

Cheating — Bonus Slides

Development

Cheating — Inlining Functions

* Next Level: inlining formerly out-of-line functions

* |dea:
- REMOVE _SINCE the out-of-line function

— add the inline function

* Two problems...

Development

88

Cheating — Inlining Functions

* Obvious problem: the two don't overload

— just use #else

* Not-so-obvious problem: ODR violation

- REMOVED _SINCE is, too, but non-actionable

— inline vs. extern linkage, or even vs. exported /s actionable

Development

89

Cheating — Inlining Functions

* \We have three domains now:
— removed _api.cpp
— callers external to the library

— callers internal to the library

Development

90

Cheating — Inlining Functions

e external users should see the function as inline

* removed_api.cpp must see it as out-of-line

— to maintain ABI

* internal users must see it as out-of-line, too
— else: ODR violation when linked with removed_api.cpp

Development

91

Cheating — INLINE _SINCE

/ point.h

struct Point { ~~~
API_INLINE _SINCE(1, 1)
int x() const;

—
#if APl _INLINE _IMPL_SINCE(1, 1)

int Point::x() const { ~~~ }
#endif

Development

/ removed_api.cpp

~ ~ ~

#include "point.h” 7 inlined API

92

Cheating — INLINE _SINCE

* INLINE_SINCE * INLINE _IMPL_SINCE
= inline — 1
* external callers * external callers
- /* notinline */ * removed_api.cpp
* removed_api.cpp -0
* internal callers * internal callers

Development

93

