

1

100 BC

Meeting C++ 2025-11-06
Marc Mutz <marc.mutz@qt.io>

2

About Marc Mutz
● Principal Software Engineer at The Qt Company
● For the purposes of this talk:

– The guy that annoys other Qt devs in API / ABI reviews

– In particular, not an expert in this topic
● just more experienced than most devs in these matters

3

About This Talk
● If you need definite answers, talk to your vendor
● Out of Scope are:

– C++20 Modules

– Linker Scripts

– Static Linking

– Combining different compiler-vendors, -versions, or -flags

4

Overview
● Motivating Example
● Definitions
● A look at the KDE BC Page
● Techniques
● Cheating
● Q & A

5

Example
● Lib v1.0

int scan(int fd);
● Lib v1.1:

enum class Options { ~~~ };
int scan(int fd, Options opt = {});

6

Example
● Lib v1.1:

enum class Options { ~~~ };
int scan(int fd, Options opt = {}); // BiC

● Lib v1.1p1:
int scan(int fd);
int scan(int fd, Options opt);

7

Example
● Lib v1.1p2:

#if LIB_REMOVED_SINCE(1, 1)
int scan(int fd);
#endif
int scan(int fd, Options opt = {});

8

Definitions

9

Definitions
● Qt / KDE
● BC / SC
● ABI / API
● forwards / backwards xC
● name mangling / exported symbols

10

Definitions – Qt and KDE
● Qt: A cross-platform application development

framework written in C++
● KDE: A (Unix) Desktop Environment based on Qt
● Both promise BC and SC within major release cycles

11

Definitions — BC
“A library is binary compatible, if a program linked
dynamically to a former version of the library
continues running with newer versions of the
library without the need to recompile.”

— KDE BC wiki

12

Definitions — BC
“A library is binary compatible, if a program linked
dynamically to a former version of the library
continues running with newer versions of the
library without the need to recompile.”

— KDE BC wiki

13

Definitions — BC
“A library is binary compatible, if a program linked
dynamically to a former version of the library
continues running with newer versions of the
library without the need to recompile.”

— KDE BC wiki

14

Definitions — BC
“A library is binary compatible, if a program linked
dynamically to a former version of the library
continues running with newer versions of the
library without the need to recompile.”

— KDE BC wiki

15

Definitions — BC
“A library is binary compatible, if a program linked
dynamically to a former version of the library
continues running with newer versions of the
library without the need to recompile.”

— KDE BC wiki

16

Definitions — BC
“A library is binary compatible, if a program linked
dynamically to a former version of the library
continues running with newer versions of the
library without the need to recompile.”

— KDE BC wiki

17

Observations — BC
● BC is not defined (by KDE) for static linking

– Doesn’t stop people from trying, though

● “Continues running” is vague
– “Still links” is just one (necessary) condition

● Not sufficient. Also need “behaviour compat”.
– Even a bugfix may break programs

18

Observations — BC
● You don’t need a library to talk about BC

– A type can be BC

– A function can be BC

● A library is just the unit of shipment
– BC is a property of smaller units

19

Definition — SC
“If a program needs to be recompiled to run with a
new version of a library but doesn't require any
further modifications, the library is source
compatible.”

— KDE BC wiki

20

Observations — SC
● Inline library code can be SiC, but usually not BiC

– Compiled into the library user
● Doesn’t change when the library changes

● BC != SC
– Adding a defaulted argument to a function: SC && !BC

– Adding a new overload of a function: BC && !SC

21

Definitions — ABI
● Application Binary Interface

– “what the linker sees”

– “below C++”

– “mangled names”

– “exported symbols”

22

Definitions — API
● Application Programming Interface

– “what the compiler sees”

– “defined by C++”

– “overloading” / “default arguments”

– “typedef”

23

Definitions — backwards xC
● “Normal” compat:

– Code compiled against old library running against new library

● Qt provides backwards BC / SC¹ in major releases
– 5.0 5.15→
– 6.0 6.???→

¹ see QUIP-6 for acceptable SC breaks

https://contribute.qt-project.org/quips/6

24

Definitions — forwards xC
● “Reversed” compat:

– Code compiled against new library running against old library

● Qt provides forwards BC / SC in minor releases
– 5.15.0 5.15.19←
– 6.8.0 6.8.???←

25

Definitions — Name Mangling
● Creates unique names for overloaded functions
● Encodes things you can overload on:

– Name
● incl. any scopes (“FQN”)

– signature (= number and type of arguments)
● Incl. template arguments
● Incl. cv- and l/rvalue qualifiers of member functions

26

Definitions — Name Mangling
● Does not encode:

– Argument names and defaults, if any

– Argument top-level cv-qualifiers (except SunCC in its days)

– noexcept

– Access specifier (except MSVC)

– Return type (except MSVC)

27

Definitions — Name Mangling
Conclusion:
– Change to name mangling inputs = ABI break

– Change to non-inputs = BC

– Platform differences!

28

Definitions — Exported Symbols: C++
● extern linkage

– other TUs can access
● needs declaration

– duplicates not allowed

● static linkage
– only this TU can access

– duplicates remain

● inline linkage
– other TUs can access

● needs definition

– duplicates are merged

29

Definitions — Exported Symbols: DSO
● Unix: callable from outside .so/.dylib by default

– inline (code copied into caller)

– extern (library code called)

● Windows: callable from outside .dll by default
– inline (code copied into caller)

30

Definitions — Exported Symbols
● Exporting is reducing (Unix) / extending (Win) the

set of symbols callable from outside the DSO
– Windows: __declspec(dll{ex,im}port)

– Unix: -fvisibility=hidden +
__attribute__((visibility("default")))

31

Definitions — Exported Symbols
● These attributes need to differ between building

the library and building against the library
● Hidden behind macros
● Qt: QT_(MODULE)_EXPORT

– generated by CMake

32

Definitions — Exported Symbols
● Types don’t need exporting (are not symbols)

– “Exported Class” is just “export all members”
● class QT_CORE_EXPORT QObject { ~~~ };

● Variables and function do
– incl. vtable of polymorphic classes (unless inline)

33

Definitions — Exported Symbols
● “Wholesale” exporting “the class” exports:

– all member functions

– all static data members (incl. vtable)

– inline functions also get exported(!)
● and, on Windows, the DLL-exported version called

– or not, if the optimizer inlines it ¯_(ツ)_/¯

34

Definitions — Exported Symbols
● “Wholesale” exporting “the class” is recursive:

– nested classes are “exported”, too

35

Definitions — Exported Symbols
● “Wholesale” exporting “the class” does not export:

– (hidden) friend functions

– non-static data members (not variables)

– member function templates

– nested class templates

36

Definitions — Exported Symbols
Conclusion:
– You don’t want to export inline symbols

– You’ll want to selectively export extern symbols
● those that need to be called from outside the DSO

– You don’t want to export an “inline” vtable

37

“Golden Rules” Of Class Exporting
● Export polymorphic classes “wholesale”

– and define the dtor out-of-line (even if empty / = default)

● Do not “wholesale” export non-polymorphic classes
– Export individual functions / variables only

● e.g. not inlines, not privates (unless called from inline code)

38

Definitions — Exported Symbols
● Exported symbols are part of the ABI

– incl. exported inlines (!)

● Non-exported symbols are not
– the fewer exported symbols, the fewer BC headaches

– exporting allows “library-private” symbols

39

Note On Unexported Inline Symbols
● Linker deduplicates them only per executable

– each DLL, and the app, each get their own copy

– harmless for functions
● except their addresses differ

– surprising for variables

40

Note On Unexported Inline Symbols
● Solution: Aggressive DRY / SCARY

– iow: extract such things into separate functions

– “pull” these functions “behind the ABI boundary”
● de-inline and export

41

A Look at the KDE BC Page
● There are many do’s and don’t’s that we have no

time for today, let’s peek at the page together:

https://community.kde.org/Policies/Binary_Compatibility_Issues_With_C%2B%2B

42

Techniques

43

Techniques
● pImpl
● reserved fields
● move semantics
● virtual functions / hooks
● inline namespaces

44

Techniques – pImpl
● “Pointer to implementation” / “Compiler Firewall”

– class Private; Private* pImpl; // only data member

– externalizes all private state (and functions)

– private parts can vary independent of public iface

45

Techniques – pImpl
● Field new’ed up in ctors

– memory allocation (or pooling)
● mitigation: implicit sharing, base class reuse, ...

– Almost all member functions must be out-of-line

– Exceptions:
● move SMFs and swap()

46

Techniques – pImpl
● Lots of gotchas:

– shallow const; back pointers; Base::pImpl reuse in
Derived

● See article series on Heise (DE) / -Wmarc (EN)

https://www.heise.de/hintergrund/C-Vor-und-Nachteile-des-d-Zeiger-Idioms-Teil-2-1136104.html
https://marcmutz.wordpress.com/translated-articles/pimp-my-pimpl-reloaded/

47

Techniques – pImpl
Conclusion:
– Effectiveness: ++

– Runtime overhead: --
● Moves and swaps are cheap, though

48

Techniques – reserved fields
● Directly-embedded unused data members

– [[maybe_unused]] void* reserved = nullptr;

– unused bits in bit-fields

– [[maybe_unused]] uint reserved = 0U;

– explicit padding: [[…]] char padding_n[M] = {};

49

Techniques – reserved fields
● Fields need to be init’ed, even if unused

– use NSDMI: = 0U/nullptr

– if inline code inits, field is already severely restricted
● e.g. 0 needs to be a valid value (or partially-formed)

– if inline code destroys, field must be trivially
destructible

50

Techniques – reserved fields
● Construction and destruction must be out-of-line!

– copy SMFs, dtor, any custom ctor (incl. default ctor)

● Exceptions:
– move SMFs, swap() inline→
– delegating constructors may be inline→

51

Techniques – reserved fields
Conclusion:
– Effectiveness: o

● Limited capacity (literally) for change

– Runtime overhead: +
● Pay only for what you use (almost)

52

BC and Move Semantics
● Move SMFs should be fast inline→
● But they shouldn’t break BC out-of-line→
● Conflict of interest?

53

BC and Move Assignment
● Natural implementation of move-assignment can be inline:

– swap(this->m_data, other.m_data)

– pImpl and reserved field alike

– “valid, but unspecified”

● BUT: assignment doesn’t destroy LHS
– OK if type holds only memory resources

– Alternative: move-and-swap (needs move ctor)

54

BC and Move Constructor
● Natural implementation of the move constructor

can also be inline:
– m_data{std::exchange(other.m_data, 0U/nullptr)}

– “Partially-Formed” State (→Meeting C++ 2020)

https://www.youtube.com/watch?v=9OQKZl7ha7g

55

BC and Move Constructor
● BUT: doesn’t work with smart_ptr

– Compiler wants to call data member dtor

– Doesn’t need it, but breaks encapsulation!

– @ ISO C++: can we fix this?
● noexcept move ctors oughtn’t call data member dtors

56

BC and Move Constructor
● smart_ptr pImpl work-around

– Make the smart_ptr dtor call an out-of-line function
● Idea: call isn’t emitted from move ctor
● Inside the library, compiler can inline said function
● No performance overhead

– BUT: MSVC LTCG doesn’t play ball (see references)

57

BC and Move Semantics
Conclusion:
– Move SMFs and swap() can (and ought to) be inline

– ISO C++ and / or MSVC may have some bugfixing to do

58

Techniques – Virtual Hook
● Problem: can’t add virtual function to a class
● Qt/QObject-specific work-around:

– non-virtual function calls impl slot through meta-object

– works, because the call is delivered via virtual function

– idea can be generalized, though

59

Techniques – Virtual Hook
● Needs to have been thought of in advance:

protected:

virtual void virtual_hook(int id, void *args) const;

● Must have be overridden in every class

60

Techniques – Virtual Hook
● New function:

int pseudoVirtual(int arg) {
int argv[2] = {0, arg};

virtual_hook(ID, argv);

return argv[0];

}

● Impl in virtual_hook():

if (id == ID) {
auto argv =
static_cast<int*>(args);

argv[0] = op(argv[1]);

}

61

Techniques — Virtual Hook
Conclusion:
– Good for isolated use

– Only for types that are already polymorphic

– Needs to be added ante hoc

– Hard-to-automate task when extending hierarchy

62

Techniques — Inline Namespaces
● Type versioning at the C++ level
● Lib v1.0:

– struct S { int x, y, z; }; int foo(const S &);

● Lib v1.1:
– struct S { int x, y, z; Flags f; }; int foo(const S &);

63

Techniques – Inline Namespaces
inline namespace S_V1_0 {
 struct S { int x, y, z; };
}
int foo(const S &s);

64

Techniques – Inline Namespaces
inline namespace S_V1_0 {
 struct S { int x, y, z; };
}
int foo(const S_V1_0::S &s); // unchanged!
inline namespace S_V1_1 {
 struct S { int x, y, z; Flags f = {}};
}
int foo(const S &s); // new function!

65

Techniques — Inline Namespaces
● Empowers users:

– “live at HEAD”: use unqualified S

– “pin old API”: use S_V1_0::S explicitly

– can even be mixed in the same TU

66

Techniques — Inline Namespaces
● Combinatorical explosion in N-ary functions, N > 1:

– replace(String &, const String &, const String &); // 8×
● Different components extend at different times

– need different namespaces
● V1_0 S_V1_0→

– or lots of boilerplate
● importing all unchanged V1_0 types into V1_1

67

Techniques — Inline Namespaces
Conclusion:
– Good for isolated use (e.g. Config struct)

– Quickly gets out of hand when used widely

– Needs to be added ante hoc

– Lots of hard-to-automate tasks on version bumps

68

Cheating

69

Cheating
● Separating API and ABI
● Removing functions from one, but not the other
● Qt’s user-config’able, rolling BC window
● Bonus: inlining out-of-line functions

70

Cheating — Observations
● Types don’t exist in the ABI

– only as a collection of functions acting on them

– there is no “Point” in the ABI

– there’s only the agreement of certain functions as to
type and location of Point’s fields

71

Cheating — Observations
● ABI is maintained as long as

– (existing) memory layout doesn’t change

– (existing) functions are not removed

72

Cheating — Example API vs. ABI
struct LIB_EXPORT Point {
 int m_x, m_y;
 void setX(int x);
 int x() const;

 void setY(int y);

 int y() const;

};

● offsetof(Point::m_x) == 0
● offsetof(Point::m_y) == 4
● Point_setX_i();
● Point_x_v();

● Point_setY_i();

● Point_y_v();

73

Cheating — Example Func Addition
struct LIB_EXPORT Point {
 int m_x, m_y;
 void setX(int x);
 int x() const;

 void setY(int y);

 int y() const;
 void setY(long long y);
};

● offsetof(Point::m_x) == 0
● offsetof(Point::m_y) == 4
● Point_setX_i();
● Point_x_v();

● Point_setY_i();

● Point_y_v();
● Point_setY_ll();

74

Cheating — Example Func Addition
struct LIB_EXPORT Point {
 int m_x, m_y;
 void setX(int x);
 int x() const;
#if 0
 void setY(int y);
#endif
 int y() const;
 void setY(long long y);
};

● offsetof(Point::m_x) == 0
● offsetof(Point::m_y) == 4
● Point_setX_i();
● Point_x_v();

 (oops)

● Point_y_v();
● Point_setY_ll();

75

Cheating — Example Func Addition
struct LIB_EXPORT Point {
 int m_x, m_y;
 void setX(int x);
 int x() const;
#if MAGIC_REMOVED_API_ONLY
 void setY(int y);
#endif
 int y() const;
 void setY(long long y);
};

● offsetof(Point::m_x) == 0
● offsetof(Point::m_y) == 4
● Point_setX_i();
● Point_x_v();

● Point_setY_i();

● Point_y_v();
● Point_setY_ll();

76

Cheating — removed_api.cpp
// point.cpp

void Point::setY(long long i) {
    ~~~~
}
void Point::setY(int i) {
    ~~~~
}

// removed_api.cpp

#define MAGIC_REMOVED_API_ONLY 1
#include “point.h”

77

Cheating — removed_api.cpp
// point.cpp

void Point::setY(long long i) {
    ~~~~
}
void Point::setY(int i) {
    ~~~~
}

// removed_api.cpp

#define MAGIC_REMOVED_API_ONLY 1
#include “point.h”

void Point::setY(int i) {
 setY(static_cast<long long>(i)); // new overload
}

78

Cheating — REMOVED_SINCE
● That’s all!
● You can get fancy and version the thing:

– API_REMOVED_SINCE(1, 1)
● You need this macro per-library

– so let your build system generate these
– but only one removed_api.cpp per library

79

Cheating — REMOVED_SINCE
● more sophisticated symbol versioning exists
● REMOVED_SINCE’s advantage is

– purely C++-based
● every C++ developer can understand how to apply it
● cross-platform

– works post-hoc

80

Cheating — Homework
● Use REMOVED_SINCE() to remove noexcept from

an exported function again
– Think about syntax in header and removed_api.cpp

– Also think about semantics of removing noexcept

81

REMOVED_SINCE — Cut-Off Version
● What happens if I introduce a cut-off version X.Y?

– i.e. REMOVED_SINCE() = 0 for all versions before X.Y

● I have just introduced a (user-config’able) cut-off
for the ABI zombie functions in my DSO
– IOW: a config’able, rolling BC window

82

A Rolling BC Window
● Upper bound:

– The library version I’m building against

● Lower bound:
– Said cut-off version

● Qt’s called -disable-deprecated-up-to

83

Cheating — REMOVED_SINCE
● Biggest drawback is: doesn’t work for virtuals

– necessary precondition not met:
● need to be able to add something to remove something else

– if it weren’t for virtuals, Qt could stay two decades more on 6.x
● alternatively, Qt 7 could be BC with Qt 6

84

Key Take-Aways
1. ABI ≠ API; both can vary independently

2. Qt has a user-config’able, rolling BC window

3. “Wholesale” exported classes and virtual
functions are big impediments to ABI evolution

85

Q & A

86

References
● KDE BC page
● Marc Mutz - On removing functions from the API, but not the ABI – Qt development ML 2022-07-13
● Marc Mutz - Partially-formed Objects for fun and profit - Meeting C++ 2020
● Marc Mutz - Pimp My Pimpl – Heise Developer 2010

– English Translation thereof
● Discussion about MSVC LTCG bug in Qt bug tracker

– Stack Overflow discussion: “Where does the destructor hide in this code?”
● QUIP-6: Acceptable Source-Incompatible Changes
● Marc Mutz – Fun With Exceptions - -Wmarc 2010-08-04
● Qt documentation: QT_DISABLE_DEPRECATED_UP_TO

https://community.kde.org/Policies/Binary_Compatibility_Issues_With_C%2B%2B
https://lists.qt-project.org/pipermail/development/2022-July/042727.html
https://www.youtube.com/watch?v=9OQKZl7ha7g
https://www.heise.de/hintergrund/C-Vor-und-Nachteile-des-d-Zeiger-Idioms-Teil-2-1136104.html
https://marcmutz.wordpress.com/translated-articles/pimp-my-pimpl-reloaded/
https://bugreports.qt.io/browse/QTBUG-133494
https://stackoverflow.com/questions/9417477/where-does-the-destructor-hide-in-this-code
https://contribute.qt-project.org/quips/6
https://marcmutz.wordpress.com/2010/08/04/fun-with-exceptions/
https://doc.qt.io/qt-6/qtdeprecationmarkers.html#QT_DISABLE_DEPRECATED_UP_TO

87

Cheating — Bonus Slides

88

Cheating — Inlining Functions
● Next Level: inlining formerly out-of-line functions
● Idea:

– REMOVE_SINCE the out-of-line function

– add the inline function

● Two problems...

89

Cheating — Inlining Functions
● Obvious problem: the two don’t overload

– just use #else

● Not-so-obvious problem: ODR violation
– REMOVED_SINCE is, too, but non-actionable

– inline vs. extern linkage, or even vs. exported is actionable

90

Cheating — Inlining Functions
● We have three domains now:

– removed_api.cpp

– callers external to the library

– callers internal to the library

91

Cheating — Inlining Functions
● external users should see the function as inline
● removed_api.cpp must see it as out-of-line

– to maintain ABI

● internal users must see it as out-of-line, too
– else: ODR violation when linked with removed_api.cpp

92

Cheating — INLINE_SINCE
// point.h
struct Point { ~~~
 API_INLINE_SINCE(1, 1)
 int x() const;
~~~ };
#if API_INLINE_IMPL_SINCE(1, 1)
int Point::x() const { ~~~ }
#endif

// removed_api.cpp
~~~
#include “point.h” // inlined API

93

Cheating — INLINE_SINCE
● INLINE_SINCE

– inline
● external callers

– /* not inline */
● removed_api.cpp
● internal callers

● INLINE_IMPL_SINCE
– 1

● external callers
● removed_api.cpp

– 0
● internal callers

94

The End

