
Range adaptors – 5 years after C++20

Hannes Hauswedell

1 / 52

Introduction

Core concepts

Indirections and lifetime

Range adaptors

Summary

2 / 52

Introduction

Core concepts

Indirections and lifetime

Range adaptors

Summary

3 / 52

About me

Bioinformatics

• PhD from FU Berlin
• Book on Sequence

Analysis and C++

ISO Committee

• Irregular since 2018.
• Mostly LEWG & SG9.
• Represent Iceland.

DeepL

• One of the biggest AI companies in Germany/Europe.
• C++, Software Engineering, Research data, some ML...
• Disclaimer: all views are my own!

4 / 52

Why this talk?
Ask Reddit:

Ask my mailbox (in 2025):

[isocpp-sg9] ... the broken filter view ... 178 messages

5 / 52

Why this talk?
• C++ Ranges are the largest addition to the standard library (ever).
• There are different expectations of what they can/should do.
• In hindsight, we would likely do some things differently.

6 / 52

Why this talk?
• C++ Ranges are the largest addition to the standard library (ever).
• There are different expectations of what they can/should do.
• In hindsight, we would likely do some things differently.

• Many controversies arise around very specific examples.
• Many suggested "fixes" only change that specific example, do not consider "the big

picture".

6 / 52

Why this talk?
• C++ Ranges are the largest addition to the standard library (ever).
• There are different expectations of what they can/should do.
• In hindsight, we would likely do some things differently.

• Many controversies arise around very specific examples.
• Many suggested "fixes" only change that specific example, do not consider "the big

picture".

• This talk will cover some aspects of what I consider "the big picture".
• I will sometimes make general statements and not mention the tiny exceptions

(because everything in C++ has exceptions).

6 / 52

Cool stu�
void printLongWordsUppercase(std::string_view const str)
{

auto notPunct = [] (unsigned char c) -> bool { return !std::ispunct(c); };
auto toUpper = [] (unsigned char c) -> char { return std::toupper(c); };
auto isLong = [] (auto && w) -> bool { return std::ranges::distance(w) > 4; };

auto view = str // "This is an average, boring sen…"
 | std::views::filter(notPunct) // "This is an average boring sent…"
 | std::views::transform(toUpper) // "THIS IS AN AVERAGE BORING SENT…"
 | std::views::split(' ') // ["THIS", "IS", "AN", "AVERAGE", …]
 | std::views::filter(isLong); // ["AVERAGE", "BORING", "SENTENCE"]

std::print("{::s}", view);
}

printLongWordsUppercase("This is a an average, boring sentence.");
// [AVERAGE, BORING, SENTENCE]

7 / 52

Iterators
auto find(auto it, auto sen, auto const & val)
{

while ((it != sen) && (*it != val))
 ++it;

return it;
}

• Iterators are the abstraction of choice since C++98.

• Generalisation of "pointers to begin and end of collection".

• Since sen may be of a different type from it, we say "iterator-sentinel-pair".

8 / 52

Ranges
auto find(auto it, auto sen, auto const & val)
{

while ((it != sen) && (*it != val))
 ++it;

return it;
}

auto find(auto && rng, auto const & val)
{

return find(begin(rng), end(rng), val);
}

• The "new" abstraction for collections since C++20.
• A range is a type where begin() returns an iterator and end() returns a sentinel for

that iterator.

9 / 52

 Build ranges on iterators – �rst design decision
Status quo:

• The ranges design is based on iterators.

10 / 52

 Build ranges on iterators – �rst design decision
Status quo:

• The ranges design is based on iterators.

Pro:

• Compatible with interfaces that expect
an iterator-sentinel-pair.
◦ If you have a range and need

iterators, just call begin() / end().
◦ If you have iterators and need a

range, just create a
std::ranges::subrange.

• Well-understood and established
design.

Con:

• Inherits some of the limitations of the
previous design.

• In particular: "go-next" (operator++)
and "read-value" (operator*) are
always separate operations.

10 / 52

Introduction

Core concepts

Indirections and lifetime

Range adaptors

Summary

11 / 52

The range concept

std::ranges::range is the "core" concept.

• requires that sr::begin() on the type return an iterator
• requires that sr::end() on the type return a sentinel
• Nothing is promised beyond this!

 On a lot of slides:

namespace sr =
std::ranges;

12 / 52

The range concept

std::ranges::range is the "core" concept.

• requires that sr::begin() on the type return an iterator
• requires that sr::end() on the type return a sentinel
• Nothing is promised beyond this!

 On a lot of slides:

namespace sr =
std::ranges;

Containers (e.g. std::vector<int>) are ranges:

• sr::begin(cnt) → cnt.begin()

• sr::end(cnt) → cnt.end()

12 / 52

The range concept

std::ranges::range is the "core" concept.

• requires that sr::begin() on the type return an iterator
• requires that sr::end() on the type return a sentinel
• Nothing is promised beyond this!

 On a lot of slides:

namespace sr =
std::ranges;

Containers (e.g. std::vector<int>) are ranges:

• sr::begin(cnt) → cnt.begin()

• sr::end(cnt) → cnt.end()

An iterator-sentinel-pair on it's own is already a range:

• std::ranges::subrange<It, Sen>, bascically a std::pair<It, Sen>

12 / 52

Range categories

Iterator Properties Range

std::input_iterator ++ (one iteration) sr::input_range

std::forward_iterator ++ (multi-pass) sr::forward_range

std::bidirectional_iterator -- sr::bidirectional_range

std::random_access_iterator [] sr::random_access_range

std::contiguous_iterator adjacent storage sr::contiguous_range

• Iterator categories refine the previous one.
• Range categories refine the previous one and require the respective iterator concept.

13 / 52

Range categories
The range categories add no requirements beyond the iterator-sentinel requirements.

template <sr::random_access_range Rng>
 requires std::integral<sr::range_value_t<Rng>> && sr::sized_range<Rng>
auto sum(Rng && rng)
{
 sr::range_value_t<Rng> r{};

for (size_t i = 0; i < sr::size(rng); ++i)
 r += rng[i];

return r;
}

14 / 52

Range categories
The range categories add no requirements beyond the iterator-sentinel requirements.

template <sr::random_access_range Rng>
 requires std::integral<sr::range_value_t<Rng>> && sr::sized_range<Rng>
auto sum(Rng && rng)
{
 sr::range_value_t<Rng> r{};

for (size_t i = 0; i < sr::size(rng); ++i)
 r += rng[i];

return r;
}

• Example is under-constrained!

14 / 52

Range categories
The range categories add no requirements beyond the iterator-sentinel requirements.

template <sr::random_access_range Rng>
 requires std::integral<sr::range_value_t<Rng>> && sr::sized_range<Rng>
auto sum(Rng && rng)
{
 sr::range_value_t<Rng> r{};

for (size_t i = 0; i < sr::size(rng); ++i)
 r += sr::begin(rng)[i]; // NEED TO OPERATE ON ITERATOR!

return r;
}

• Example is under-constrained!
• sr::random_access_range does not imply that the range offers operator[], only the

iterator is required to.

14 / 52

Range categories
The range categories add no requirements beyond the iterator-sentinel requirements.

template <sr::random_access_range Rng>
 requires std::integral<sr::range_value_t<Rng>> && sr::sized_range<Rng>
auto sum(Rng && rng)
{
 sr::range_value_t<Rng> r{};

for (size_t i = 0; i < sr::size(rng); ++i)
 r += sr::begin(rng)[i]; // NEED TO OPERATE ON ITERATOR!

return r;
}

• Example is under-constrained!
• sr::random_access_range does not imply that the range offers operator[], only the

iterator is required to.
• C++26 will ship the four random access ranges std::flat_*; two without operator[]

and two with different operator[].

14 / 52

The multi-pass guarantee
Forward (multi-pass) iterators:

1. can be default-constructed, copied, compared-against-self (std::regular)
2. two iterators are a range (std::sentinel_for<FIt, FIt>)
3. incrementing one iterator does not invalidate another
4. copies that are independently incremented yield the same values

15 / 52

The multi-pass guarantee
Forward (multi-pass) iterators:

1. can be default-constructed, copied, compared-against-self (std::regular)
2. two iterators are a range (std::sentinel_for<FIt, FIt>)
3. incrementing one iterator does not invalidate another
4. copies that are independently incremented yield the same values

Forward (multi-pass) ranges:

1. sr::begin(rng) returns a forward iterator.
2. sr::begin(rng) can be called multiple times, and does not modify rng.
3. Complexity of calling sr::begin() repeatedly shall ammortize to O(1).

You can iterate over the range multiple times and will observe the same elements.

15 / 52

The multi-pass guarantee

std::vector<int> vec{1, 2, 3, 4};

auto it = vec.begin();
auto it2 = vec.begin();
auto cpy = it;

assert(it == cpy);
assert(*it == *cpy);

assert(it++ == cpy);
assert(++cpy == it);
assert(*it == *cpy);

16 / 52

The multi-pass guarantee

std::vector<int> vec{1, 2, 3, 4};

auto it = vec.begin();
auto it2 = vec.begin();
auto cpy = it;

assert(it == cpy);
assert(*it == *cpy);

assert(it++ == cpy);
assert(++cpy == it);
assert(*it == *cpy);

• All containers are forward (multi-pass)
ranges!

• The iterator is an observer to the range;
creating the iterator (begin()), incrementing
or deref-ing do not change the range
in an observable way.

• The properties are likely what most people
expect.

16 / 52

The multi-pass guarantee

std::vector<int> vec{1, 2, 3, 4};

auto it = vec.begin();
auto it2 = vec.begin();
auto cpy = it;

assert(it == cpy);
assert(*it == *cpy);

assert(it++ == cpy);
assert(++cpy == it);
assert(*it == *cpy);

• All containers are forward (multi-pass)
ranges!

• The iterator is an observer to the range;
creating the iterator (begin()), incrementing
or deref-ing do not change the range
in an observable way.

• The properties are likely what most people
expect.

 The following is not implied by sr::forward_range<Rng>

• Default-construct, copy, or compare (std::regular<Rng>).
• Const-iterate (sr::forward_range<Rng const>).

16 / 52

Single-pass ranges
Single-pass iterators ("input" but not "forward"):

• Do not provide the multi-pass guarantee
• Not required to be default-constructible, copyable or comparable-with-self.
• May require separate sentinel type to form a range.
• If copyable, incrementing one iterator may invalidate others.

17 / 52

Single-pass ranges
Single-pass iterators ("input" but not "forward"):

• Do not provide the multi-pass guarantee
• Not required to be default-constructible, copyable or comparable-with-self.
• May require separate sentinel type to form a range.
• If copyable, incrementing one iterator may invalidate others.

Single-pass ranges:

1. sr::begin(rng) returns a single-pass iterator.
2. Undefined behaviour to call sr::begin(rng) more than once (generally).
3. If safe to call sr::begin() multiple times, no promises about complexity.

In general, assume that you can call begin() once and that the range is "exhausted" (empty)
when/if the end is reached.

17 / 52

Single-pass ranges

std::istringstream strstr("1 3 5 7 8 9 10");

auto it = std::istream_iterator<int>(strstr);
auto it2 = std::istream_iterator<int>(strstr);
auto cpy = it;

++it; // modifies strstr AND it2 AND cpy

• No single-pass ranges in pre-C+
+20-stdlib.

• Only two single-pass iterators:
std::istream_iterator and
std::istreambuf_iterator

18 / 52

Single-pass ranges

std::istringstream strstr("1 3 5 7 8 9 10");

auto it = std::istream_iterator<int>(strstr);
auto it2 = std::istream_iterator<int>(strstr);
auto cpy = it;

++it; // modifies strstr AND it2 AND cpy

• No single-pass ranges in pre-C+
+20-stdlib.

• Only two single-pass iterators:
std::istream_iterator and
std::istreambuf_iterator

• C++20 introduces std::generator which
will make them more common.

• Nico Jusuttis has a talk on generators
tomorrow, go check it out!

std::generator<size_t> my_iota()
{

for (size_t i = 0; true; ++i)
 co_yield i;
}

18 / 52

Single-pass ranges
• Single-pass ranges change state during iteration.
• The iterators are not observers, they modify the range!
• Natural to not always be default-constructible, comparable and/or copyable.

19 / 52

Single-pass ranges
• Single-pass ranges change state during iteration.
• The iterators are not observers, they modify the range!
• Natural to not always be default-constructible, comparable and/or copyable.

• Conceptionally, they only have one operation: make_item().
• Separate operator++ and operator* are not ideal; you can deref multiple times.

std::generator<std::string> parse_lines(std::istream & i) { /**/ }

• Should operator* return std::string, std::string & or std::string &&?

19 / 52

Single-pass ranges
• Single-pass ranges change state during iteration.
• The iterators are not observers, they modify the range!
• Natural to not always be default-constructible, comparable and/or copyable.

• Conceptionally, they only have one operation: make_item().
• Separate operator++ and operator* are not ideal; you can deref multiple times.

std::generator<std::string> parse_lines(std::istream & i) { /**/ }

• Should operator* return std::string, std::string & or std::string &&?

Post scriptum: not every range that generates elements is single-pass!

• e.g. sr::repeat_view generates one value for infinity.
• e.g. sr::iota_view generates a series of values.
• No state change, or only iterator, so both are multi-pass ranges.

19 / 52

 Minimal vs meaningful category concepts
Status quo:

• "Minimal" (range category concepts only comprise iterator category concepts).
• No [] on random access ranges.
• No (semi-)regularity or const-iterability on forward ranges.

20 / 52

 Minimal vs meaningful category concepts
Status quo:

• "Minimal" (range category concepts only comprise iterator category concepts).
• No [] on random access ranges.
• No (semi-)regularity or const-iterability on forward ranges.

Pro:

• Concepts can be composed, so they
should be concise.

• You can always make your own, more
refined concepts!

• If e.g. random_access_range requires
more than the iterator concept, what
would a range without the extras be?

Con:

• Concepts should be meaningful!
• Minimal concepts results in lack of

features and consistency, e.g.
std::flat_set lacking [].

20 / 52

 One abstraction for single-pass and multi-pass ranges
Status quo:

• Single-pass (input-only) ranges are also "ranges", although fundamentally different.
• But, clearly separated by sr::input_range ↔ sr::forward_range.

21 / 52

 One abstraction for single-pass and multi-pass ranges
Status quo:

• Single-pass (input-only) ranges are also "ranges", although fundamentally different.
• But, clearly separated by sr::input_range ↔ sr::forward_range.

Pro:

• Consistent with established iterator
concepts.

• Several algorithms, e.g. find(), work
on either (although they mean slightly
different things).

Con:

• Other designs more suitable for single-
pass "ranges".

• Some unexpected and some undefined
behaviour.

• Increased complexity for handling
both in algorithms.

21 / 52

Introduction

Basic range concepts

Indirections and lifetime

Range adaptors

Summary

22 / 52

Indirections

std::vector<int> std::vector<int> *             

as const protects elements elements mutable

copy copies elements pointer copied

== compares elements compares address

destruction frees elements elements untouched

complexities O(n) O(1)  

sr::range yes no  

23 / 52

Indirections

std::vector<int> std::vector<int> * sr::subrange<int*,int*>

as const protects elements elements mutable elements mutable

copy copies elements pointer copied pointers copied

== compares elements compares address n/a

destruction frees elements elements untouched elements untouched

complexities O(n) O(1) O(1)

sr::range yes no yes

24 / 52

Indirections

std::vector<int> std::vector<int> * sr::subrange<int*,int*>

as const protects elements elements mutable elements mutable

copy copies elements pointer copied pointers copied

== compares elements compares address n/a

destruction frees elements elements untouched elements untouched

complexities O(n) O(1) O(1)

sr::range yes no yes

The range concepts cover containers—but also types that behave like pointers to
containers.

24 / 52

Indirections
void foobar(std::ranges::forward_range auto && rng)
{

auto const & cns = rng; // Protects the elements or not? Is it even a range?

}

25 / 52

Indirections
void foobar(std::ranges::forward_range auto && rng)
{

auto const & cns = rng; // Protects the elements or not? Is it even a range?

auto cpy = rng; // Copies elements? Allocates? Is it even well-formed?

}

25 / 52

Indirections
void foobar(std::ranges::forward_range auto && rng)
{

auto const & cns = rng; // Protects the elements or not? Is it even a range?

auto cpy = rng; // Copies elements? Allocates? Is it even well-formed?

bool ret = (cpy == rng); // What is being compared? Is it even well-formed?
}

Standard library range concepts make no promises!

25 / 52

 One abstraction for containers and indirect ranges (1)
Status quo:

• A Range can have the semantics of a container, or of a "pointer-to-container".
• The usage patterns are identical (no dereference required like for a pointer).

26 / 52

 One abstraction for containers and indirect ranges (1)
Status quo:

• A Range can have the semantics of a container, or of a "pointer-to-container".
• The usage patterns are identical (no dereference required like for a pointer).

Pro:

• Easy to use.
• Allows common interface for "vector"

and "subrange of vector".
• Allows replacing std::string const &

with std::string_view.

Con:

• Easy to mis-use.
• const-correctness becomes more

difficult to achieve.
• Performance implications difficult

foresee.

26 / 52

Lifetime
auto find(auto it, auto sen, auto const & val)
{

while ((it != sen) && (*it != val))
 ++it;

return it;
}

auto find(auto && rng, auto const & val)
{

return find(sr::begin(rng), sr::end(rng), val);
}

27 / 52

Lifetime
auto find(auto it, auto sen, auto const & val)
{

while ((it != sen) && (*it != val))
 ++it;

return it;
}

auto find(auto && rng, auto const & val)
{

return find(sr::begin(rng), sr::end(rng), val);
}

std::string s = "foobar";
auto it1 = find(s.begin(), s.end(), 'a');
auto it2 = find(s, 'a');
auto it3 = find(std::string{"foobar"}, 'a');

27 / 52

Lifetime
auto find(auto it, auto sen, auto const & val)
{

while ((it != sen) && (*it != val))
 ++it;

return it;
}

auto find(auto && rng, auto const & val)
{

return find(sr::begin(rng), sr::end(rng), val);
}

std::string s = "foobar";
auto it1 = find(s.begin(), s.end(), 'a'); // safe
auto it2 = find(s, 'a'); // safe
auto it3 = find(std::string{"foobar"}, 'a'); // rvalue, dangling

27 / 52

Lifetime
auto find(auto it, auto sen, auto const & val)
{

while ((it != sen) && (*it != val))
 ++it;

return it;
}

auto find(auto && rng, auto const & val)
{

return find(sr::begin(rng), sr::end(rng), val);
}

std::string s = "foobar";
auto it1 = find(s.begin(), s.end(), 'a'); // safe
auto it2 = find(s, 'a'); // safe
auto it3 = find(std::string{"foobar"}, 'a'); // rvalue, dangling
auto it4 = find(sr::subrange{s}, 'a'); // rvalue, not dangling

27 / 52

Lifetime
auto find(auto it, auto sen, auto const & val)
{

while ((it != sen) && (*it != val))
 ++it;

return it;
}

auto find(auto & rng, auto const & val)
{

return find(sr::begin(rng), sr::end(rng), val);
}

std::string s = "foobar";
auto it1 = find(s.begin(), s.end(), 'a'); // safe
auto it2 = find(s, 'a'); // safe
// auto it3 = find(std::string{"foobar"}, 'a'); // dangling prevented
// auto it4 = find(sr::subrange{s}, 'a'); // also prevented

27 / 52

Borrowed ranges
auto find(auto it, auto sen, auto const & val)
{

while ((it != sen) && (*it != val))
 ++it;

return it;
}

auto find(sr::borrowed_range auto && rng, auto const & val)
{

return find(begin(rng), end(rng), val);
}

std::string s = "foobar";
auto it1 = find(s.begin(), s.end(), 'a'); // safe
auto it2 = find(s, 'a'); // safe
// auto it3 = find(std::string{"foobar"}, 'a'); // dangling prevented
auto it4 = find(sr::subrange{s}, 'a'); // "good" rvalue allowed

28 / 52

Borrowed ranges
std::ranges::borrowed_range, "a range with reference semantics":

• Lvalues and rvalues of ranges whose iterators can outlive the range.
◦ sr::subrange<It, Sen> &,
◦ sr::subrange<It, Sen>, sr::subrange<It, Sen> &&

• Lvalue references to any range.
◦ std::vector<int> &
◦ std::vector<int>, std::vector<int> &&

29 / 52

Borrowed ranges
std::ranges::borrowed_range, "a range with reference semantics":

• Lvalues and rvalues of ranges whose iterators can outlive the range.
◦ sr::subrange<It, Sen> &,
◦ sr::subrange<It, Sen>, sr::subrange<It, Sen> &&

• Lvalue references to any range.
◦ std::vector<int> &
◦ std::vector<int>, std::vector<int> &&

// Lifetime dependencies
std::vector<int> vec{1,2,3}; // ┐
auto it = vec.begin(); // ┘

//
//
//
//

29 / 52

Borrowed ranges
std::ranges::borrowed_range, "a range with reference semantics":

• Lvalues and rvalues of ranges whose iterators can outlive the range.
◦ sr::subrange<It, Sen> &,
◦ sr::subrange<It, Sen>, sr::subrange<It, Sen> &&

• Lvalue references to any range.
◦ std::vector<int> &
◦ std::vector<int>, std::vector<int> &&

// Lifetime dependencies
std::vector<int> vec{1,2,3}; // ┐ ┐ ┐
auto it = vec.begin(); // ┘ │ │

// │ │
sr::subrange indi{vec}; // ┘ │

// │
auto it2 = indi.begin(); // ┘

29 / 52

Borrowed ranges
std::ranges::borrowed_range, "a range with reference semantics":

• Lvalues and rvalues of ranges whose iterators can outlive the range.
◦ sr::subrange<It, Sen> &,
◦ sr::subrange<It, Sen>, sr::subrange<It, Sen> &&

• Lvalue references to any range.
◦ std::vector<int> &
◦ std::vector<int>, std::vector<int> &&

// Lifetime dependencies
std::vector<int> vec{1,2,3}; // ┐ ┐ ┐
auto it = vec.begin(); // ┘ │ │

// │ │
sr::subrange indi{vec}; // ┘ │ ┐

// │ ─ not dependent on indi!
auto it2 = indi.begin(); // ┘ ┘

29 / 52

Borrowed ranges
std::ranges::borrowed_range, "a range with reference semantics":

• Lvalues and rvalues of ranges whose iterators can outlive the range.
◦ sr::subrange<It, Sen> &,
◦ sr::subrange<It, Sen>, sr::subrange<It, Sen> &&

• Lvalue references to any range.
◦ std::vector<int> &
◦ std::vector<int>, std::vector<int> &&

// Lifetime dependencies
std::vector<int> vec{1,2,3}; // ┐ ┐ ┐
auto it = vec.begin(); // ┘ │ │

// │ │
std::vector<int> & indi{vec}; // ┘ │ ┐

// │ ─ not dependent on indi!
auto it2 = indi.begin(); // ┘ ┘

29 / 52

 One abstraction for containers and indirect ranges (2)
Status quo:

• A Range can have the semantics of a container, or of a "pointer-to-container".
• In general, iterators depend on the lifetime of the range they were created from (e.g.

containers), but for so called borrowed ranges they don't.

30 / 52

 One abstraction for containers and indirect ranges (2)
Status quo:

• A Range can have the semantics of a container, or of a "pointer-to-container".
• In general, iterators depend on the lifetime of the range they were created from (e.g.

containers), but for so called borrowed ranges they don't.

Pro:

• Protect interfaces from lifetime issues.
• Clear definition of what "indirect" /

"non-owning" means.
• Reference analogy helpful?

Con:

• Only workaround for flawed previous
decision (mixing containers and
indirect ranges)?

• concept<T> == false but concept<T&> ==
true may be surprising for some.

• Requires explicit opt-in through type
trait.

30 / 52

Introduction

Core concepts

Indirections and lifetime

Range adaptors

Summary

31 / 52

Range adaptors - terminology
Range adaptor, a range that depends on, or wraps, another range.

• simple ones: std::span<int>, std::string_view, sr::subrange<It,Sen>

32 / 52

Range adaptors - terminology
Range adaptor, a range that depends on, or wraps, another range.

• simple ones: std::span<int>, std::string_view, sr::subrange<It,Sen>
• composable: sr::transform_view<V,Fn>, sr::filter_view<V, Fn> …

32 / 52

Range adaptors - terminology
Range adaptor, a range that depends on, or wraps, another range.

• simple ones: std::span<int>, std::string_view, sr::subrange<It,Sen>
• composable: sr::transform_view<V,Fn>, sr::filter_view<V, Fn> …
• container adaptors: std::queue<T, Cont>, std::flat_set<T, Comp, Cont> (C++26) …

32 / 52

Range adaptors - terminology
Range adaptor, a range that depends on, or wraps, another range.

• simple ones: std::span<int>, std::string_view, sr::subrange<It,Sen>
• composable: sr::transform_view<V,Fn>, sr::filter_view<V, Fn> …
• container adaptors: std::queue<T, Cont>, std::flat_set<T, Comp, Cont> (C++26) …

In this broad sense, no implications arise for programmers; and no concept covers all
range adaptors.

• The "simple adaptors" have widespread usage in APIs. Container adaptors are used
standalone.

• The composable adaptors are most powerful, but also raise the most questions.

32 / 52

Range adaptors - the big three topics

1. Range adaptors that cache begin.
2. Different forms of indirection.
3. The dilution of the view concept.

®

33 / 52

Range adaptors - the big three topics

1. Range adaptors that cache begin.
2. Different forms of indirection.
3. The dilution of the view concept.

®

33 / 52

Range adaptors - caching begin()
Forward (multi-pass) ranges:

1. sr::begin(rng) returns a forward iterator.
2. sr::begin(rng) can be called multiple times, and does not modify rng.
3. Complexity of calling sr::begin() repeatedly shall ammortize to O(1).

34 / 52

Range adaptors - caching begin()
Forward (multi-pass) ranges:

1. sr::begin(rng) returns a forward iterator.
2. sr::begin(rng) can be called multiple times, and does not modify rng.
3. Complexity of calling sr::begin() repeatedly shall ammortize to O(1).

std::vector<int> vec{1, 1, 1, 2, 2, 1, 2};

auto v = vec | std::views::filter(is_even) | std::views::reverse;

for (auto it = v.begin(); it != v.end(); ++it)
std::println("{}", *it);

34 / 52

Range adaptors - caching begin()
Forward (multi-pass) ranges:

1. sr::begin(rng) returns a forward iterator.
2. sr::begin(rng) can be called multiple times, and does not modify rng.
3. Complexity of calling sr::begin() repeatedly shall ammortize to O(1).

std::vector<int> vec{1, 1, 1, 2, 2, 1, 2};

auto v = vec | std::views::filter(is_even) | std::views::reverse;

for (auto it = v.begin(); it != v.end(); ++it)
std::println("{}", *it);

• Calling begin() on the filter need to find() the first even number (O(n)).
• Calling end() on the reverse invokes begin() on the filter → quadratic complexity

unless begin() is cached.

34 / 52

Range adaptors - caching begin()
Strategies for caching begin():

1. Only advertise input_range and do not cache.

◦ Okay if you only need one pass.
◦ Prevents chaining adaptors that require multi-pass, like std::views::reverse (even

you only need one pass over them!).

35 / 52

Range adaptors - caching begin()
Strategies for caching begin():

1. Only advertise input_range and do not cache.

◦ Okay if you only need one pass.
◦ Prevents chaining adaptors that require multi-pass, like std::views::reverse (even

you only need one pass over them!).

2. Cache when begin() is called the first time.

◦ Calling begin() now has side-effects (although not observable).
◦ The range is no longer const-iterable, e.g. you cannot pass it to
void print(auto const & rng);

35 / 52

Range adaptors - caching begin()
Strategies for caching begin():

1. Only advertise input_range and do not cache.

◦ Okay if you only need one pass.
◦ Prevents chaining adaptors that require multi-pass, like std::views::reverse (even

you only need one pass over them!).

2. Cache when begin() is called the first time.

◦ Calling begin() now has side-effects (although not observable).
◦ The range is no longer const-iterable, e.g. you cannot pass it to
void print(auto const & rng);

3. Cache on construction.

◦ Cost of finding begin always paid, even if there is no iteration.
◦ Not fully lazy-evaluated.

35 / 52

Range adaptors - caching begin()
Strategies for caching begin():

1. Only advertise input_range and do not cache.

◦ Okay if you only need one pass.
◦ Prevents chaining adaptors that require multi-pass, like std::views::reverse (even

you only need one pass over them!).

2. Cache when begin() is called the first time.

◦ Calling begin() now has side-effects (although not observable).
◦ The range is no longer const-iterable, e.g. you cannot pass it to
void print(auto const & rng);

3. Cache on construction.

◦ Cost of finding begin always paid, even if there is no iteration.
◦ Not fully lazy-evaluated.

35 / 52

Range adaptors - caching begin()
Forward (multi-pass) ranges:

1. sr::begin(rng) returns a forward iterator.
2. sr::begin(rng) can be called multiple times, and does not modify rng.
3. Complexity of calling sr::begin() repeatedly shall ammortize to O(1).

36 / 52

Range adaptors - caching begin()
Forward (multi-pass) ranges:

1. sr::begin(rng) returns a forward iterator.
2. sr::begin(rng) can be called multiple times, and does not modify rng observably.
3. Complexity of calling sr::begin() repeatedly shall ammortize to O(1).

36 / 52

Range adaptors - caching begin()
Forward (multi-pass) ranges:

1. sr::begin(rng) returns a forward iterator.
2. sr::begin(rng) can be called multiple times, and does not modify rng observably.
3. Complexity of calling sr::begin() repeatedly shall ammortize to O(1).

Cache when begin() is called the first time:

void print(auto const & rng);

std::vector<int> vec{1, 1, 1, 2, 2, 1, 2};
auto v = vec | std::views::filter(is_even);
// print(v); // ill-formed

The programmer observes no change-of-state in v, but they cannot pass it by const &.

36 / 52

Range adaptors - caching begin()
1. Only advertise input_range and do not cache.

◦ Okay if you only need one pass.
◦ Prevents chaining adaptors that require multi-pass like std::views::reverse (even

you only need one pass over them!).

36 / 52

Range adaptors - caching begin()
1. Only advertise input_range and do not cache.

◦ Okay if you only need one pass.
◦ Prevents chaining adaptors that require multi-pass like std::views::reverse (even

you only need one pass over them!).

• C++26 introduces std::views::input_filter with the above semantics.
• Surprisingly, this will actually be const-iterable... because it doesn't need to cache.

36 / 52

Range adaptors - caching begin()
1. Only advertise input_range and do not cache.

◦ Okay if you only need one pass.
◦ Prevents chaining adaptors that require multi-pass like std::views::reverse (even

you only need one pass over them!).

• C++26 introduces std::views::input_filter with the above semantics.
• Surprisingly, this will actually be const-iterable... because it doesn't need to cache.

• input_range: can change observably on begin() and/
or iteration; but views::input_filter is const-iterable.

• forward_range: cannot change observably on begin()
and/or iteration; but views::filter is not const-
iterable.

36 / 52

 Caching begin()
Status quo:

• Some multi-pass range adaptors initialise a cache the first time begin() is called.
• Some range adaptors now intentionally demote category to input_range to avoid this.

37 / 52

 Caching begin()
Status quo:

• Some multi-pass range adaptors initialise a cache the first time begin() is called.
• Some range adaptors now intentionally demote category to input_range to avoid this.

Pro:

• Caching begin() is necessary for multi-
pass ranges.

• "Lazier" than the alternative.

Con:

• Weakens the multi-pass guarantee
(that would otherwise imply const-
iterability).

• Const-iterable input ranges further
confuse the mental model.

37 / 52

Range adaptors - the big three topics

1. Range adaptors that cache begin.
2. Different forms of indirection.
3. The dilution of the view concept.

®

38 / 52

Range adaptors - indirection
Some adaptors from std::views:: return borrowed ranges:

// Lifetime dependencies
std::vector<int> vec{1,2,7,3}; // ┐ ┐

// │ │
auto v = vec | std::views::take(3); // ┘ │ ┐

// │ ─ not dependent on v!
auto it = v.begin(); // ┘ ┘

39 / 52

Range adaptors - indirection
Some adaptors from std::views:: return borrowed ranges:

// Lifetime dependencies
std::vector<int> vec{1,2,7,3}; // ┐ ┐

// │ │
auto v = vec | std::views::take(3); // ┘ │ ┐

// │ ─ not dependent on v!
auto it = v.begin(); // ┘ ┘

But other adaptors from std::views:: do not:

// Lifetime dependencies
std::vector<int> vec{1,2,7,3}; // ┐ ┐
auto fn = [] (int i) { return i > 2; }; // │ │
auto v = vec | std::views::filter(fn); // ┘ │ ┐

// │ │ is dependent on v!
auto it = v.begin(); // ┘ ┘

39 / 52

Range adaptors - indirection
Implications:

std::vector<int> vec{1,2,7,3};
int mint = *sr::min_element(vec | std::views::take(3)); // well-formed: 1

auto fn = [] (int i) { return i > 2; };
//int minf = *sr::min_element(vec | std::views::filter(fn)); // ill-formed

40 / 52

Range adaptors - indirection
Implications:

std::vector<int> vec{1,2,7,3};
int mint = *sr::min_element(vec | std::views::take(3)); // well-formed: 1

auto fn = [] (int i) { return i > 2; };
//int minf = *sr::min_element(vec | std::views::filter(fn)); // ill-formed

auto v = vec | std::views::filter(fn); // create temp. var
int minf = *sr::min_element(v); // well-formed: 3

40 / 52

Range adaptors - indirection
Implications:

std::vector<int> vec{1,2,7,3};
int mint = *sr::min_element(vec | std::views::take(3)); // well-formed: 1

auto fn = [] (int i) { return i > 2; };
//int minf = *sr::min_element(vec | std::views::filter(fn)); // ill-formed

auto v = vec | std::views::filter(fn); // create temp. var
int minf = *sr::min_element(v); // well-formed: 3

• This is a design choice!
• We could store all state in the iterators: every (indirect) adaptor becomes borrowed.
• But the iterators could become much larger.

40 / 52

Range adaptors - indirection

Borrowed Range
contains only iterator-sentinel-pair; its iterators do not refer back to it.
⊂ Non-owning Range
may contain state, but not proportional to #elements (e.g. a functor).
⊂ Range
may contain the elements or state proportional to #elements.

41 / 52

 Multiple degrees of ownership/indirection
Status quo:

• Borrowed ranges are a well-defined concept, but not all adaptors-on-lvalues return
borrowed ranges.

• "Non-owning" ranges that are not borrowed are more difficult to define.

42 / 52

 Multiple degrees of ownership/indirection
Status quo:

• Borrowed ranges are a well-defined concept, but not all adaptors-on-lvalues return
borrowed ranges.

• "Non-owning" ranges that are not borrowed are more difficult to define.

Pro:

• Keeps iterators small.

Con:

• Prevents using iterators standalone.
• This is a common pattern, also in the standard

library.
• Makes the mental model more complicated.

42 / 52

Range adaptors - the big three topics

1. Range adaptors that cache begin.
2. Different forms of indirection.
3. The dilution of the view concept.

®

43 / 52

Range adaptors - views
Me: »Please summarise in one sentence how views in C++ differ from other ranges!«

ChatGPT5:

44 / 52

Range adaptors - views
Me: »Please summarise in one sentence how views in C++ differ from other ranges!«

ChatGPT5: »In C++, views are lightweight, non-owning adaptors that provide a window
over existing ranges or containers without copying or owning the underlying elements,
unlike other ranges that may store or own their data.«

44 / 52

Range adaptors - views
Me: »Please summarise in one sentence how views in C++ differ from other ranges!«

ChatGPT5: »In C++, views are lightweight, non-owning adaptors that provide a window
over existing ranges or containers without copying or owning the underlying elements,
unlike other ranges that may store or own their data.«

 Wrong

44 / 52

Range adaptors - views
Me: »Please summarise in one sentence how views in C++ differ from other ranges!«

ChatGPT5: »In C++, views are lightweight, non-owning adaptors that provide a window
over existing ranges or containers without copying or owning the underlying elements,
unlike other ranges that may store or own their data.«

 Wrong

auto view1 = std::views::iota(0, 10); // not a range adaptor

auto view2 = std::string{"foobar"} | std::views::take(3); // owns the string

44 / 52

Range adaptors - views
std::ranges::view:

• std::semiregular (default-constructible, copyable)
• copyable in O(1) ("non-owning")

45 / 52

Range adaptors - views
std::ranges::view:

• std::semiregular (default-constructible, copyable)
• copyable in O(1) ("non-owning")

Changed by P2415 post C++20.

46 / 52

https://wg21.link/p2415
https://wg21.link/p2415

Range adaptors - views
std::ranges::view:

• std::semiregular (default-constructible, copyable)
• copyable in O(1) ("non-owning")

Changed by P2415 post C++20.

auto view2 = std::string{"foobar"} | std::views::take(3); // returns sr::owning_view

46 / 52

https://wg21.link/p2415
https://wg21.link/p2415

Range adaptors - views
std::ranges::view:

• std::semiregular (default-constructible, copyable)
• copyable in O(1) ("non-owning")

Changed by P2415 post C++20.

auto view2 = std::string{"foobar"} | std::views::take(3); // returns sr::owning_view

46 / 52

https://wg21.link/p2415
https://wg21.link/p2415

Range adaptors - views

Type "Adaptor" Destruct Copy ⟲ ⎋ View

sr::transform_view<ref_view<…>, ...> yes O(1) O(1) yes yes yes

sr::subrange<int*, int*> yes O(1) O(1) no yes yes

sr::owning_view<...> yes O(n) n/a yes no yes

std::generator<int> ? ? n/a yes ? yes

sr::iota_view<Val, Bound> no O(1) O(1) no no yes

sr::repeat_view<Val, Bound> no O(1) O(1) yes no yes

std::vector<int> no O(n) O(n) yes no no

⟲: whether iterators depend on lifetime of range itself (!sr::borrowed_range<>)
⎋: whether iterators depend on lifetime of another range

47 / 52

 The view concept
Status quo:

• Views can be non-owning (indirect) or owning.

48 / 52

 The view concept
Status quo:

• Views can be non-owning (indirect) or owning.

Pro:

• You can move containers into views.

Con:

• Nobody can explain what "view"
means.

48 / 52

Introduction

Basic range concepts

Indirections and lifetime

Range adaptors

Summary

49 / 52

Summary
• std::ranges::range probably encompasses more than it should
• std::ranges::forward_range probably encompasses more than it should
• std::ranges::view probably encompasses more than it should

50 / 52

Summary
• std::ranges::range probably encompasses more than it should
• std::ranges::forward_range probably encompasses more than it should
• std::ranges::view probably encompasses more than it should

80% of features with 20% of complexity possible,
but if you want 100% of features, you get 100% of complexity!

50 / 52

Summary
• std::ranges::range probably encompasses more than it should
• std::ranges::forward_range probably encompasses more than it should
• std::ranges::view probably encompasses more than it should

80% of features with 20% of complexity possible,
but if you want 100% of features, you get 100% of complexity!

The "mental model" for many terms might be muddy, but they still work quite well in
practice!

50 / 52

Summary
void printLongWordsUppercase(std::string_view const str)
{

auto notPunct = [] (unsigned char c) -> bool { return !std::ispunct(c); };
auto toUpper = [] (unsigned char c) -> char { return std::toupper(c); };
auto isLong = [] (auto && w) -> bool { return std::ranges::distance(w) > 4; };

auto view = str // "This is an average, boring sen…"
 | std::views::filter(notPunct) // "This is an average boring sent…"
 | std::views::transform(toUpper) // "THIS IS AN AVERAGE BORING SENT…"
 | std::views::split(' ') // ["THIS", "IS", "AN", "AVERAGE", …]
 | std::views::filter(isLong); // ["AVERAGE", "BORING", "SENTENCE"]

std::print("{::s}", view);
}

printLongWordsUppercase("This is a an average, boring sentence.");
// [AVERAGE, BORING, SENTENCE]

51 / 52

Thanks for attending the talk!

Questions?

My own ranges library:
https://github.com/h-2/radr

Blog:
https://hannes.hauswedell.net

LinkedIn:
https://www.linkedin.com/in/hannes-hauswedell/

52 / 52

https://github.com/h-2/radr
https://github.com/h-2/radr
https://hannes.hauswedell.net/
https://hannes.hauswedell.net/
https://www.linkedin.com/in/hannes-hauswedell/
https://www.linkedin.com/in/hannes-hauswedell/

