Range adaptors - 5 years after (++20

Hannes Hauswedell

Introduction
Core concepts
Indirections and lifetime

Range adaptors

Summary

Introduction
Core concepts
Indirections and lifetime

Range adaptors

Summary

Bioinformatics ISO Committee

e Irregular since 2018.
e Mostly LEWG & SG9.
e Represent Iceland.

| e PhD from FU Berlin
Een e Book on Sequence
Analysis and C++

DeepL

e One of the biggest Al companies in Germany/Europe.
o C++, Software Engineering, Research data, some ML...
e Disclaimer: all views are my own!

452

Why this talk?

Ask Reddit;

Reddit - r/cpp
Ca. 20 Kommentare - vor 2 Jahren %

C++ views are broken : ricpp

Some, but not all. Views having non-const begin/end is still a huge flaw, and makes it incompatible
with existing libraries, as well as unsafe ..

Reddit - r/cpp
Ca. 20 Kommentare - vor 2 Jahren §

Are standard views "completely broken"? : ricpp

It's not broken. It's by design. Fixing some aspects means loss of some functionalities or performance.

Reddit - r/cpp
Ca. 30 Kommentare - vor 2 Jahren &
Are there likely to be any changes to views to fix the issues ...

Or are we now stuck since any change will either break backwards compatibility or require adding a
second official view library (yuck)? I use ...

39 Antworten - Top-Antwort: so | can easily imagine that there is another side to the story Indeed. The t...

Ask my mailbox (in 2025):

[1socpp-sg9] ... the broken

@i Artistic_Yoghurt4754 - vor 3 Jahren

Omg, this issue is a real war zone and | am not even sure | want to pick a side. I'm not sure | want to

spend the time learning ranges anymore :’(

¢ 58 O Antworten

filter view ...

£ Auszeichnen

o> Teilen

178 messages

5/52

Why this talk?

e C++ Ranges are the largest addition to the standard library (ever).
e There are different expectations of what they can/should do.
e In hindsight, we would likely do some things differently.

6/52

Why this talk?

C++ Ranges are the largest addition to the standard library (ever).
There are different expectations of what they can/should do.
In hindsight, we would likely do some things differently.

QR

Many controversies arise around very specific examples.
e Many suggested "fixes" only change that specific example, do not consider "the big
picture".

6/52

Why this talk?

C++ Ranges are the largest addition to the standard library (ever).
There are different expectations of what they can/should do.
In hindsight, we would likely do some things differently.

QR

Many controversies arise around very specific examples.
e Many suggested "fixes" only change that specific example, do not consider "the big
picture".

e This talk will cover some aspects of what I consider "the big picture".
o I will sometimes make general statements and not mention the tiny exceptions
(because everything in C++ has exceptions).

6/52

Cool stuff

void printLongWordsUppercase(std::string view const str)

{

auto notPunct
auto toUpper
auto islong

auto view str

| std:
| std:
| std:
| std:

[] (unsigned char c) -> bool { return !std::ispunct(c); };
[] (unsigned char c) -> char { return std::toupper(c); };
[] (auto && w) -> bool { return std::ranges::distance(w) > 4; };

:views:
:views:
:views:
:views:

:filter(notPunct) // "This is an average boring sent..
:transform(toUpper) // "THIS IS AN AVERAGE BORING SENT.."
csplit(! ') // ["THIS", "IS", "AN", "AVERAGE", ..]
:filter(isLong); // ["AVERAGE", "BORING", "SENTENCE"]

// "This i1s an average, boring sen..

std::print("{::s}", view);

printLongWordsUppercase("This is a an average, boring sentence.");
// [AVERAGE, BORING, SENTENCE]

752

lterators

auto find(auto it, auto sen, auto const & val)

while ((it != sen) && (*it != val))
++1t;

return it;

}

e Iterators are the abstraction of choice since C++98.
e Generalisation of "pointers to begin and end of collection".

e Since sen may be of a different type from it, we say "iterator-sentinel-pair".

8 /52

Ranges

auto find(auto it, auto sen, auto const & val)

while ((it != sen) && (*it != val))

++1t;
return it;
}
auto find(auto && rng, auto const & val)
i return find(begin(rng), end(rng), val);

e The "new" abstraction for collections since C++20.
e Arange is a type where begin() returns an iterator and end() returns a sentinel for
that iterator.

9/52

& Build ranges on iterators - first design decision

Status quo:

e The ranges design is based on iterators.

10 /52

& Build ranges on iterators - first design decision

Status quo:

e The ranges design is based on iterators.

Pro:

o Compatible with interfaces that expect
an iterator-sentinel-pair.
o If you have a range and need
iterators, just call begin() / end().
o If you have iterators and need a
range, just create a
std: :ranges: :subrange.
e Well-understood and established
design.

Con:

e Inherits some of the limitations of the
previous design.

e In particular: "go-next" (operator++)
and "read-value" (operator*) are
always separate operations.

10 /52

Introduction

Core concepts
Indirections and lifetime

Range adaptors

Summary

The range concept

std::ranges::range is the "core" concept.] On alot of slides:
e requires that sr::begin() on the type return an iterator namespace sr =
e requires that sr::end() on the type return a sentinel std::ranges;

e Nothing is promised beyond this!

12 /52

The range concept

std::ranges::range is the "core" concept.] On alot of slides:
e requires that sr::begin() on the type return an iterator namespace sr =
e requires that sr::end() on the type return a sentinel std::ranges;

e Nothing is promised beyond this!

Containers (e.g. std: :vector<int>) are ranges:

e sr::begin(cnt) — cnt.begin()

e sr::end(cnt) — cnt.end()

12 /52

The range concept

std::ranges::range is the "core" concept.] On alot of slides:

e requires that sr::begin() on the type return an iterator namespace sr =
e requires that sr::end() on the type return a sentinel std::ranges;
e Nothing is promised beyond this!

Containers (e.g. std: :vector<int>) are ranges:

e sr::begin(cnt) — cnt.begin()

e sr::end(cnt) — cnt.end()

An iterator-sentinel-pair on it's own is already a range:

e std::ranges::subrange<It, Sen>, bascically a std::pair<It, Sen>
12 /52

Range categories

Iterator Properties
std::input_iterator ++ (one iteration)
std::forward_iterator ++ (multi-pass)

std::bidirectional _iterator
std::random_access_iterator []

std::contiguous_iterator adjacent storage

e Iterator categories refine the previous one.

e Range categories refine the previous one and require the respective iterator concept.

Range

Sr

ST

Sr

Sr

Sr

::input_range
..:forward_range
::bidirectional_range
:random_access_range

::contiguous_range

13 /52

Range categories

The range categories add no requirements beyond the iterator-sentinel requirements.

template <sr::random_access_range Rng>
requires std::integral<sr::range_value t<Rng>> && sr::sized _range<Rng>
auto sum(Rng && rng)

{
sr::range_value_t<Rng> r{};
for (size t 1 = 0; 1 < sr::size(rng); ++1i)
r += rng[i];
return r;
}

14 /52

Range categories

The range categories add no requirements beyond the iterator-sentinel requirements.

template <sr::random_access_range Rng>
requires std::integral<sr::range_value t<Rng>> && sr::sized _range<Rng>
auto sum(Rng && rng)

{
sr::range_value t<Rng> r{};
for (size .t 1 = 0; 1 < sr::size(rng); ++1i)
r += rng[i];
return r;
}

e Example is under-constrained!

14 /52

Range categories

The range categories add no requirements beyond the iterator-sentinel requirements.

template <sr::random_access_range Rng>
requires std::integral<sr::range_value t<Rng>> && sr::sized _range<Rng>
auto sum(Rng && rng)

{
sr::range_value t<Rng> r{};
for (size .t 1 = 0; 1 < sr::size(rng); ++1i)
r += sr::begin(rng)[i];
return r;
}

e Example is under-constrained!
e sr::random_access_range does not imply that the range offers operator[], only the
iterator is required to.

14 /52

Range categories

The range categories add no requirements beyond the iterator-sentinel requirements.

template <sr::random_access_range Rng>
requires std::integral<sr::range_value t<Rng>> && sr::sized _range<Rng>
auto sum(Rng && rng)

{
sr::range_value t<Rng> r{};
for (size .t 1 = 0; 1 < sr::size(rng); ++1i)
r += sr::begin(rng)[i];
return r;
}

e Example is under-constrained!

e sr::random_access_range does not imply that the range offers operator[], only the
iterator is required to.

o C++26 will ship the four random access ranges std: : flat_*; two without operator([]
and two with different operator[].

14 /52

The multi-pass guarantee

Forward (multi-pass) iterators:

1. can be default-constructed, copied, compared-against-self (std: : regular)
2. two iterators are a range (std::sentinel_for<FIt, FIt>)

3. Incrementing one iterator does not invalidate another

4. copies that are independently incremented yield the same values

15 /52

The multi-pass guarantee

Forward (multi-pass) iterators:

1. can be default-constructed, copied, compared-against-self (std: : regular)
2. two iterators are a range (std::sentinel_for<FIt, FIt>)

3. Incrementing one iterator does not invalidate another

4. copies that are independently incremented yield the same values

Forward (multi-pass) ranges:

1. sr::begin(rng) returns a forward iterator.
2. sr::begin(rng) can be called multiple times, and does not modify rng.
3. Complexity of calling sr: :begin() repeatedly shall ammortize to O(1).

You can iterate over the range multiple times and will observe the same elements.

15 /52

The multi-pass guarantee

std::vector<int> vec{1, 2, 3, 4};

auto it = vec.begin();
auto 1t2 = vec.begin();
auto cpy = it;

assert(it == cpy);

assert(*it == *cpy);
assert(it++ == cpy);
assert(++cpy == it);
assert(*it == *cpy);

16 /52

The multi-pass guarantee

std: :vector<int> vec{1, 2, 3, 4}: o All containers are forward (multi-pass)
ranges!
auto 1t = vec. Eeg}“()5 o The iterator is an observer to the range;
de L2 = WEe, egin(); creating the iterator (begin()), incrementing
auto cpy = 1t; .
or deref-ing do not change the range
assert(it == cpy); in an observable way.
assert(*it == *cpy); The properties are likely what most people
assert(it++ == cpy); expect.
assert(++cpy == it);
assert(*it == *cpy);

16 /52

The multi-pass guarantee

std: :vector<int> vec{1, 2, 3, 4}: o All containers are forward (multi-pass)
ranges!

auto 1t = vec.begin(); o The iterator is an observer to the range;

auto it2 = vec.begin();

creating the iterator (begin()), incrementing

auto cpy = 1t; or deref-ing do not change the range
assert(it == cpy); in an observable way.

assert(*it == *cpy); The properties are likely what most people
assert(it++ == cpy); expect.

assert(++cpy == it);

assert(*it == *cpy);

I, The following is not implied by sr::forward_range<Rng> /|

e Default-construct, copy, or compare (std: : regular<Rng>).
e Const-iterate (sr::forward_range<Rng const>).

16 /52

Single-pass ranges

Single-pass iterators ("input” but not "forward"):

e Do not provide the multi-pass guarantee &

o Not required to be default-constructible, copyable or comparable-with-self.
e May require separate sentinel type to form a range.

 If copyable, incrementing one iterator may invalidate others.

17 /52

Single-pass ranges

Single-pass iterators ("input” but not "forward"):

Do not provide the multi-pass guarantee &

Not required to be default-constructible, copyable or comparable-with-self.
May require separate sentinel type to form a range.

If copyable, incrementing one iterator may invalidate others.

Single-pass ranges:

1. sr::begin(rng) returns a single-pass iterator.
2. Undefined behaviour to call sr: :begin(rng) more than once (generally).
3. If safe to call sr::begin() multiple times, no promises about complexity.

In general, assume that you can call begin() once and that the range is "exhausted” (empty)
when/if the end is reached.

17 /52

Single-pass ranges

std::istringstream strstr("1 3 57 8 9 10"); e No smgl'e—pass ranges 1n pre-C+
+20-stdlib.

auto i1t = std::istream_iterator<int>(strstr); e Only two single-pass iterators:

auto it2 - ;tq::15tream_1terator<1nt>(strstr); std: :istream iterator and

auto cpy = 1t;))
std::istreambuf 1iterator

++1t; =

18 /52

Single-pass ranges

std::istringstream strstr("1 3 57 8 9 10"); * No single-pass ranges in pre-C+
+20-stdlib.
auto it = std: :?stream_zlterator<:1nt>(strstr); e Only two single-pass iterators:
auto 1t2 = std::istream_iterator<int>(strstr); <td::istream iterator and
GLEO Cpy = LE; std::istreambuf 1iterator
++1t; =
e C++20 introduces std: :generator which std: :generator<size t> my iota()
will make them more common. {
e Nico Jusuttis has a talk on generators for (size_t 1 = 0; true; ++1)
tomorrow, go check it out! co_yield i;

18 /52

Single-pass ranges

e Single-pass ranges change state during iteration.
e The iterators are not observers, they modify the range!
o Natural to not always be default-constructible, comparable and/or copyable.

19 /52

Single-pass ranges

Single-pass ranges change state during iteration.
The iterators are not observers, they modify the range!
Natural to not always be default-constructible, comparable and/or copyable.

Conceptionally, they only have one operation: make_1item().
Separate operator++ and operator* are not ideal; you can deref multiple times.

std: :generator<std::string> parse lines(std::istream & i) { }

Should operator* return std: :string, std::string & Or std::string &&?

19 /52

Single-pass ranges

Single-pass ranges change state during iteration.
The iterators are not observers, they modify the range!
Natural to not always be default-constructible, comparable and/or copyable.

Conceptionally, they only have one operation: make_1item().
Separate operator++ and operator* are not ideal; you can deref multiple times.

std: :generator<std::string> parse lines(std::istream & i) { }

Should operator* return std: :string, std::string & Or std::string &&?

Post scriptum: not every range that generates elements is single-pass!

e e.g. sr::repeat_view generates one value for infinity.
e e.g. sr::lota_view generates a series of values.
e No state change, or only iterator, so both are multi-pass ranges.

19 /52

“%&' Minimal vs meaningful category concepts

Status quo:

e "Minimal" (range category concepts only comprise iterator category concepts).
e No [] on random access ranges.
e No (semi-)regularity or const-iterability on forward ranges.

20 /52

“%&' Minimal vs meaningful category concepts

Status quo:

e "Minimal" (range category concepts only comprise iterator category concepts).
e No [] on random access ranges.
e No (semi-)regularity or const-iterability on forward ranges.

Pro: Con:
e Concepts can be composed, so they e Concepts should be meaningful!
should be concise. e Minimal concepts results in lack of
e You can always make your own, more features and consistency, e.g.
refined concepts! std::flat_set lacking [].

o If e.g. random_access_range requires
more than the iterator concept, what
would a range without the extras be?

20 /52

‘%' One abstraction for single-pass and multi-pass ranges

Status quo:

e Single-pass (input-only) ranges are also "ranges", although fundamentally different.
e But, clearly separated by sr::input_range <> sr::forward_range.

21 /52

‘%' One abstraction for single-pass and multi-pass ranges

Status quo:

e Single-pass (input-only) ranges are also "ranges", although fundamentally different.
e But, clearly separated by sr::input_range <> sr::forward_range.

Pro: Con:
e Consistent with established iterator e Other designs more suitable for single-
concepts. pass "ranges".
e Several algorithms, e.g. find(), work e Some unexpected and some undefined
on either (although they mean slightly behaviour.
different things). e Increased complexity for handling

both in algorithms.

21 /52

Introduction

Basic range concepts

Indirections and lifetime

Range adaptors

Summary

Indirections

as const

Copy

destruction

complexities

Sr:.range

std: :vector<int>
protects elements
copies elements
compares elements
frees elements

O(n)

yes

std::vector<int> *
elements mutable
pointer copied
compares address
elements untouched
0(1)

no

23 /52

Indirections

as const

copy

destruction
complexities

Sr..range

std: :vector<int>
protects elements
copies elements
compares elements
frees elements

O(n)

yes

std::vector<int> *
elements mutable
pointer copied
compares address
elements untouched
0()

no

sr::subrange<int*,int*>
elements mutable
pointers copied

n/a

elements untouched

0(1)

yes

24 [52

Indirections

std: :vector<int>
as const protects elements
copy copies elements

== compares elements

destruction frees elements
complexities O(n)
Sr..range yes

std::vector<int> *
elements mutable
pointer copied
compares address
elements untouched
0()

no

sr::subrange<int*,int*>
elements mutable
pointers copied

n/a

elements untouched

0(1)

yes

The range concepts cover containers—but also types that behave like pointers to

containers.

24 [52

Indirections

void foobar(std::ranges::forward range auto && rng)

{

auto const & cns = rng; // Protects the elements or not? Is it even a range?

25 /52

Indirections

void foobar(std::ranges::forward range auto && rng)

{

auto const & cns

rng; // Protects the elements or not? Is it even a range?

auto cpy = rng; // Copies elements? Allocates? Is it even well-formed?

25 /52

Indirections

void foobar(std::ranges::forward range auto && rng)

{
auto const & cns = rng; // Protects the elements or not? Is it even a range?
auto cpy = rng; // Copies elements? Allocates? Is it even well-formed?
bool ret = (cpy == rng); // What is being compared? Is it even well-formed?

}

Standard library range concepts make no promises!

25 /52

"% One abstraction for containers and indirect ranges (1)

Status quo:

e A Range can have the semantics of a container, or of a "pointer-to-container".
e The usage patterns are identical (no dereference required like for a pointer).

26 /52

"% One abstraction for containers and indirect ranges (1)

Status quo:

e A Range can have the semantics of a container, or of a "pointer-to-container".
e The usage patterns are identical (no dereference required like for a pointer).

Pro: Con:
e Easy to use. e Easy to mis-use.
e Allows common interface for "vector" e const-correctness becomes more
and "subrange of vector". difficult to achieve.
o Allows replacing std::string const & e Performance implications difficult
with std: :string_view. foresee.

26 /52

Lifetime

auto find(auto it, auto sen, auto const & val)

while ((it != sen) && (*it != val))

++1t;
return it;
}
auto find(auto && rng, auto const & val)
i return find(sr::begin(rng), sr::end(rng), val);

27 [52

Lifetime

auto find(auto it, auto sen, auto const & val)

while ((it != sen) && (*it != val))

++1t;
return it;
}
auto find(auto && rng, auto const & val)
i return find(sr::begin(rng), sr::end(rng), val);

std::string s = "foobar";

auto itl = find(s.begin(), s.end(), 'a');
auto it2 = find(s, 'a');

auto 1t3 = find(std::string{"foobar"}, 'a');

27 [52

Lifetime

auto find(auto it, auto sen, auto const & val)

while ((it != sen) && (*it != val))

++1t;

return it;
}
auto find(auto && rng, auto const & val)
{

return find(sr::begin(rng), sr::end(rng), val);
}
std::string s = "foobar";
auto itl = find(s.begin(), s.end(), 'a'); /] safe
auto it2 = find(s, 'a'); /] safe
auto 1t3 = find(std::string{"foobar"}, 'a'); // rvalue, dangling

27 [52

Lifetime

auto find(auto it, auto sen, auto const & val)

while ((it != sen) && (*it != val))

++1t;

return it;
}
auto find(auto && rng, auto const & val)
{

return find(sr::begin(rng), sr::end(rng), val);
}
std::string s = "foobar";
auto itl = find(s.begin(), s.end(), 'a'); /] safe
auto it2 = find(s, 'a'); /] safe
auto 1t3 = find(std::string{"foobar"}, 'a'); // rvalue, dangling
auto 1t4 = find(sr::subrange{s}, 'a'); // rvalue, not dangling

27 [52

Lifetime

auto find(auto it, auto sen, auto const & val)

while ((it != sen) && (*it != val))

++1t;

return it;
}
auto find(auto & rng, auto const & val)
{

return find(sr::begin(rng), sr::end(rng), val);
}
std::string s = "foobar";
auto itl1 = find(s.begin(), s.end(), 'a'); /] safe
auto it2 = find(s, 'a'); /] safe
// auto i1t3 = find(std::string{"foobar"}, 'a'); // dangling prevented y/
// auto 1t4 = find(sr::subrange{s}, 'a'); /] also prevented X

27 [52

Borrowed ranges

auto find(auto it, auto sen, auto const & val)

while ((it != sen) && (*it != val))

++1t;

return it;
}
auto find(sr::borrowed range auto && rng, auto const & val)
{

return find(begin(rng), end(rng), val);
}
std::string s = "foobar";
auto itl = find(s.begin(), s.end(), 'a'); /] safe
auto it2 = find(s, 'a'); /] safe
// auto it3 = find(std::string{"foobar"}, 'a'); // dangling prevented y/
auto it4 = find(sr::subrange{s}, 'a'); // "good" rvalue allowed Y/

28 /52

Borrowed ranges

std::ranges: :borrowed_range, "a range with reference semantics":

e Lvalues and rvalues of ranges whose iterators can outlive the range.
o \/ sr::subrange<It, Sen> 8§,
o \/ sr::subrange<It, Sen>, sr::subrange<It, Sen> &&
e Lvalue references to any range.
o V/ std::vector<int> &
O x std::vector<int>, std::vector<int> &&

29 /52

Borrowed ranges

std::ranges: :borrowed_range, "a range with reference semantics":

e Lvalues and rvalues of ranges whose iterators can outlive the range.
o \/ sr::subrange<It, Sen> 8§,
o v/'sr::subrange<It, Sen>, sr::subrange<It, Sen> &&
e Lvalue references to any range.
o V/ std::vector<int> &
O X std::vector<int>, std::vector<int> &&

std: :vector<int> vec{1,2,3};
auto it = vec.begin();

29 /52

Borrowed ranges

std::ranges: :borrowed_range, "a range with reference semantics":

e Lvalues and rvalues of ranges whose iterators can outlive the range.
o V/'sr::subrange<It, Sen> &,
o V/'sr::subrange<It, Sen>, sr::subrange<It, Sen> &&
e Lvalue references to any range.
o V/ std::vector<int> &
O X std::vector<int>, std::vector<int> &&

std: :vector<int> vec{1,2,3};
auto it = vec.begin();

sr::subrange indi{vec};

auto 1t2 = indi.begin();

29 /52

Borrowed ranges

std::ranges: :borrowed_range, "a range with reference semantics":

e Lvalues and rvalues of ranges whose iterators can outlive the range.
o V/'sr::subrange<It, Sen> &,
o V/'sr::subrange<It, Sen>, sr::subrange<It, Sen> &&
e Lvalue references to any range.
o V/ std::vector<int> &
O X std::vector<int>, std::vector<int> &&

std: :vector<int> vec{1,2,3};
auto it = vec.begin();

sr::subrange indi{vec};

auto 1t2 = indi.begin();

29 /52

Borrowed ranges

std::ranges: :borrowed_range, "a range with reference semantics":

e Lvalues and rvalues of ranges whose iterators can outlive the range.
o V/'sr::subrange<It, Sen> &,
o V/'sr::subrange<It, Sen>, sr::subrange<It, Sen> &&
e Lvalue references to any range.
o V/ std::vector<int> &
O X std::vector<int>, std::vector<int> &&

std: :vector<int> vec{1,2,3};
auto it = vec.begin();

std::vector<int> & indi{vec};

auto 1t2 = indi.begin();

29 /52

‘%' One abstraction for containers and indirect ranges (2)

Status quo:

e A Range can have the semantics of a container, or of a "pointer-to-container".
e In general, iterators depend on the lifetime of the range they were created from (e.g.
containers), but for so called borrowed ranges they don't.

30 /52

‘%' One abstraction for containers and indirect ranges (2)

Status quo:

e A Range can have the semantics of a container, or of a "pointer-to-container".
e In general, iterators depend on the lifetime of the range they were created from (e.g.
containers), but for so called borrowed ranges they don't.

Pro: Con:
e Protect interfaces from lifetime issues. e Only workaround for flawed previous
e Clear definition of what "indirect" / decision (mixing containers and
"non-owning" means. indirect ranges)?
e Reference analogy helpful? e concept<T> == false but concept<T&> ==

true may be surprising for some.
e Requires explicit opt-in through type
trait.

30 /52

Introduction
Core concepts

Indirections and lifetime

Range adaptors

Summary

Range adaptors - terminology

Range adaptor, a range that depends on, or wraps, another range.

e simple ones: std: :span<int>, std: :string_view, sr::subrange<It,Sen>

32 /52

Range adaptors - terminology

Range adaptor, a range that depends on, or wraps, another range.

e simple ones: std: :span<int>, std: :string_view, sr::subrange<It,Sen>
e composable: sr::transform_view<V,Fn>, sr::filter_view<V, Fn> ...

32 /52

Range adaptors - terminology

Range adaptor, a range that depends on, or wraps, another range.

e simple ones: std: :span<int>, std: :string_view, sr::subrange<It,Sen>
e composable: sr::transform_view<V,Fn>, sr::filter_view<V, Fn> ...
e container adaptors: std: :queue<T, Cont>, std::flat_set<T, Comp, Cont> (C++26) ...

32 /52

Range adaptors - terminology

Range adaptor, a range that depends on, or wraps, another range.

e simple ones: std: :span<int>, std: :string_view, sr::subrange<It,Sen>
e composable: sr::transform_view<V,Fn>, sr::filter_view<V, Fn> ...
e container adaptors: std: :queue<T, Cont>, std::flat_set<T, Comp, Cont> (C++26) ...

In this broad sense, no implications arise for programmers; and no concept covers all
range adaptors.

e The "simple adaptors" have widespread usage in APIs. Container adaptors are used

standalone.
» The composable adaptors are most powerful, but also raise the most questions.

32 /52

Range adaptors - the big three topics

Die drel

1. Range adaptors that cache begin.
2. Different forms of indirection.
3. The dilution of the view concept.

33 /52

Range adaptors - the big three topics

Die drel

1. Range adaptors that cache begin.
2.
3.

33 /52

Range adaptors - caching begin()

Forward (multi-pass) ranges:

1. sr::begin(rng) returns a forward iterator.
2. sr::begin(rng) can be called multiple times, and does not modify rng.
3. Complexity of calling sr: :begin() repeatedly shall ammortize to O(1).

34 /52

Range adaptors - caching begin()
Forward (multi-pass) ranges:
1.
2.
3. Complexity of calling sr::begin() repeatedly shall ammortize to O(1).

std::vector<int> vec{1, 1, 1, 2, 2, 1, 2};
auto v = vec | std::views::filter(is _even) | std::views::reverse;

for (auto it = v.begin(); it != v.end(); ++it)
std::println("{}", *it);

34 /52

Range adaptors - caching begin()
Forward (multi-pass) ranges:

1.
2.
3. Complexity of calling sr::begin() repeatedly shall ammortize to O(1).
std::vector<int> vec{1, 1, 1, 2, 2, 1, 2};

auto v = vec | std::views::filter(is _even) | std::views::reverse;

for (auto it = v.begin(); it != v.end(); ++it)
std::println("{}", *it);

e Calling begin() on the filter need to find() the first even number (O(n)).
o Calling end() on the reverse invokes begin() on the filter = quadratic complexity
unless begin() is cached.

34 /52

Range adaptors - caching begin()

Strategies for caching begin():
1. Only advertise input_range and do not cache.

o Okay if you only need one pass.
o Prevents chaining adaptors that require multi-pass, like std: :views::reverse (even
you only need one pass over them!).

35/52

Range adaptors - caching begin()

Strategies for caching begin():
1. Only advertise input_range and do not cache.

o Okay if you only need one pass.
o Prevents chaining adaptors that require multi-pass, like std: :views::reverse (even
you only need one pass over them!).

2. Cache when begin() is called the first time.

o Calling begin() now has side-effects (although not observable).
o The range is no longer const-iterable, e.g. you cannot pass it to
void print(auto const & rng);

35/52

Range adaptors - caching begin()

Strategies for caching begin():
1. Only advertise input_range and do not cache.

o Okay if you only need one pass.
o Prevents chaining adaptors that require multi-pass, like std: :views::reverse (even
you only need one pass over them!).

2. Cache when begin() is called the first time.

o Calling begin() now has side-effects (although not observable).
o The range is no longer const-iterable, e.g. you cannot pass it to
void print(auto const & rng);

3. Cache on construction.

o Cost of finding begin always paid, even if there is no iteration.
o Not fully lazy-evaluated.
35/52

Range adaptors - caching begin()

Strategies for caching begin():

1.

2. Cache when begin() is called the first time.

o Calling begin() now has side-effects (although not observable).
o The range is no longer const-iterable, e.g. you cannot pass it to
void print(auto const & rng);

35/52

Range adaptors - caching begin()

Forward (multi-pass) ranges:

1. sr::begin(rng) returns a forward iterator.
2. sr::begin(rng) can be called multiple times, and does not modify rng.
3. Complexity of calling sr: :begin() repeatedly shall ammortize to O(1).

36 /52

Range adaptors - caching begin()

Forward (multi-pass) ranges:

1.
2. sr::begin(rng) can be called multiple times, and does not modify rng observably.
3.

36 /52

Range adaptors - caching begin()

Forward (multi-pass) ranges:

1.
2. sr::begin(rng) can be called multiple times, and does not modify rng observably.

3.

Cache when begin() is called the first time:

voild print(auto const & rng);

std::vector<int> vec{1, 1, 1, 2, 2, 1, 2};
auto v = vec | std::views::filter(is_even);

The programmer observes no change-of-state in v, but they cannot pass it by const &.

36 /52

Range adaptors - caching begin()

1. Only advertise input_range and do not cache.
o Okay if you only need one pass.
o Prevents chaining adaptors that require multi-pass like std: :views: :reverse (even
you only need one pass over them!).

36 /52

Range adaptors - caching begin()

1. Only advertise input_range and do not cache.
o Okay if you only need one pass.
o Prevents chaining adaptors that require multi-pass like std: :views: :reverse (even
you only need one pass over them!).

e C++26 Introduces std: :views: :input_filter with the above semantics.
e Surprisingly, this will actually be const-iterable... because it doesn't need to cache.

36 /52

Range adaptors - caching begin()

1. Only advertise input_range and do not cache.
o Okay if you only need one pass.
o Prevents chaining adaptors that require multi-pass like std: :views::reverse (even
you only need one pass over them!).

C++26 introduces std: :views: :input_filter with the above semantics.
Surprisingly, this will actually be const-iterable... because it doesn't need to cache.

e input_range: can change observably on begin() and/
or iteration; but views: :input_filter 1S const-iterable.

e forward_range: cannot change observably on begin()
and/or iteration; but views: :filter is not const-
iterable. ONLY MAKES THINGS WORSE

R)

A GERMAN NOUN WORD FOR AN
ATTEMPTED IMPROVEMENT THAT

36 /52

"% Caching begin()

e Some multi-pass range adaptors initialise a cache the first time begin() is called.
e Some range adaptors now intentionally demote category to input_range to avoid this.

37 /52

"% Caching begin()

Status quo:

e Some multi-pass range adaptors initialise a cache the first time begin() is called.
e Some range adaptors now intentionally demote category to input_range to avoid this.

Pro: Con:
e Caching begin() is necessary for multi- o Weakens the multi-pass guarantee
pass ranges. (that would otherwise imply const-
e "Lazier" than the alternative. iterability).

e Const-iterable input ranges further
confuse the mental model.

37 /52

Range adaptors - the big three topics

Die drel

1.
2. Different forms of indirection.
3.

38 /52

Range adaptors - indirection

Some adaptors from std: :views:: return borrowed ranges:

std::vector<int> vec{1,2,7,3};
auto v = vec | std::views::take(3);

auto it = v.begin();

39 /52

Range adaptors - indirection

Some adaptors from std: :views:: return borrowed ranges:

std::vector<int> vec{1,2,7,3};
auto v = vec | std::views::take(3);

auto it = v.begin();

But other adaptors from std: :views:: do not:

std::vector<int> vec{1,2,7,3};
auto fn = [] (int 1) { return 1 > 2; };
auto v = vec | std::views::filter(fn);

auto it = v.begin();

39 /52

Range adaptors - indirection

Implications:

std::vector<int> vec{1,2,7,3};
int mint = *sr::min_element(vec | std::views::take(3));

auto fn =[] (int 1) { return 1 > 2; };

40/ 52

Range adaptors - indirection

Implications:

std::vector<int> vec{1,2,7,3};

int mint

auto fn
//int minf

auto v
int minf

*sr::min_element(vec | std::views::take(3));

[] (int 1) { return 1 > 2; };
*sr::min_element(vec | std::views::filter(fn));

vec | std::views::filter(fn);
*sr::min_element(v);

/]

/]

/]
/]

well-formed: 1
1ll-formed

create temp. var
well-formed: 3

40 / 52

Range adaptors - indirection

Implications:

std::vector<int> vec{1,2,7,3};

int mint = *sr::min_element(vec | std::views::take(3));
auto fn =[] (int 1) { return 1 > 2; };

auto v = vec | std::views::filter(fn);

int minf = *sr::min_element(v);

e This is a design choice!
e We could store all state in the iterators: every (indirect) adaptor becomes borrowed.
e But the iterators could become much larger.

40/ 52

Range adaptors - indirection

borrowed non-owning pot. owning
ranges ranges ranges
none 0O(1) O(n) .

state stored in range

Borrowed Range

contains only iterator-sentinel-pair; its iterators do not refer back to it.
C Non-owning Range

may contain state, but not proportional to #elements (e.g. a functor).
C Range

may contain the elements or state proportional to #elements.

41 /52

"2 Multiple degrees of ownership/indirection

Status quo:

e Borrowed ranges are a well-defined concept, but not all adaptors-on-lvalues return
borrowed ranges.
e "Non-owning" ranges that are not borrowed are more difficult to define.

42 [52

"2 Multiple degrees of ownership/indirection

Status quo:

e Borrowed ranges are a well-defined concept, but not all adaptors-on-lvalues return
borrowed ranges.
e "Non-owning" ranges that are not borrowed are more difficult to define.

Pro: Con:
e Keeps iterators small. e Prevents using iterators standalone.
e This is a common pattern, also in the standard
library.

e Makes the mental model more complicated.

42 [52

Range adaptors - the big three topics

Die drel

. The dilution of the view concept.

43 /52

Range adaptors - views

Me: »Please summarise in one sentence how views in C++ differ from other ranges!«

ChatGPT5:

44 | 52

Range adaptors - views

Me: »Please summarise in one sentence how views in C++ differ from other ranges!«

ChatGPTS5: »In C++, views are lightweight, non-owning adaptors that provide a window
over existing ranges or containers without copying or owning the underlying elements,
unlike other ranges that may store or own their data.«

44 | 52

Range adaptors - views

Me: »Please summarise in one sentence how views in C++ differ from other ranges!«

ChatGPTS5: »In C++, views are lightweight, non-owning adaptors that provide a window
over existing ranges or containers without copying or owning the underlying elements,
unlike other ranges that may store or own their data.«

1. Wrong |

44 | 52

Range adaptors - views

Me: »Please summarise in one sentence how views in C++ differ from other ranges!«

ChatGPTS5: »In C++, views are lightweight, non-owning adaptors that provide a window
over existing ranges or containers without copying or owning the underlying elements,
unlike other ranges that may store or own their data.«

1. Wrong |

auto viewl std::views::1ota(0, 10);

std::string{"foobar"} | std::views::take(3);

auto view?2

44 [52

Range adaptors - views

std::ranges::view:

e std::semiregular (default-constructible, copyable)
e copyable in O(1) ("non-owning")

45 /52

Range adaptors - views

std::ranges::view:

o stdi:semiregular{default-constructible; copyable)
. ble in O(L)" g

Changed by P2415 post C++20.

46 [52

https://wg21.link/p2415
https://wg21.link/p2415

Range adaptors - views

std::ranges::view:

o stdi:semiregular{default-constructible; copyable)
. ble in O(L)" g

Changed by P2415 post C++20.

auto view2 = std::string{"foobar"} | std::views::take(3);

46 [52

https://wg21.link/p2415
https://wg21.link/p2415

Range adaptors - views

std::ranges::view:

Changed by P2415 post C++20.
auto view2 = std::string{"foobar"} | std::views::take(3);

‘i Eric Niebler Over a year ago

| was going to hold my tongue but ... " owning_view " was not part of the original design. Previously, you
couldn't use the adaptors on a temporary container. The existence of " owning_view " muddies the design
and contributes to this confusion. I'm sad it was ever added.

46 [52

https://wg21.link/p2415
https://wg21.link/p2415

Range adaptors - views

Type

sr::transform_view<ref view<.>, ...>

sr::subrange<int*, int*>
sr::owning view<...>

std: :generator<int>
sr::iota_view<Val, Bound>
sr::repeat_view<Val, Bound>

std::vector<int>

9: whether iterators depend on lifetime of range itself (!sr::

"Adaptor"
yes
yes
yes

?
no
no

no

Destruct

O(1)
0(1)
O(n)
?
O(1)
0(1)

O(n)

O: whether iterators depend on lifetime of another range

Copy D
0(1) yes
0o(1) no
n/a yes
n/a yes
0o(1) no
O(1) yes
O(mn) yes

O

yes
yes

no

no
no

no

borrowed_range<>)

View

yes
yes

yes

yes

yes
yes

no

47 [52

“%&' The view concept

Status quo:

e Views can be non-owning (indirect) or owning.

48 [52

“%&' The view concept

Status quo:

e Views can be non-owning (indirect) or owning.

Pro: Con:
e You can move containers into views. e Nobody can explain what "view"
means.

48 [52

Introduction
Basic range concepts
Indirections and lifetime

Range adaptors

Summary

Summary

e std::ranges::range probably encompasses more than it should
e std::ranges::forward_range probably encompasses more than it should
e std::ranges::view probably encompasses more than it should

50/52

Summary

e std::ranges::range probably encompasses more than it should
e std::ranges::forward_range probably encompasses more than it should
e std::ranges::view probably encompasses more than it should

80% of features with 20% of complexity possible, 80%

200/0

but if you want 100% of features, you get 100% of complexity! o

50/52

Summary

e std::ranges::range probably encompasses more than it should
e std::ranges::forward_range probably encompasses more than it should
e std::ranges::view probably encompasses more than it should

80% of features with 20% of complexity possible, N
20%

but if you want 100% of features, you get 100% of complexity! o

The "mental model” for many terms might be muddy, but they still work quite well in
practice!

50/52

Summary

void printLongWordsUppercase(std::string view const str)

{

auto notPunct
auto toUpper
auto islong

auto view str

| std:
| std:
| std:
| std:

[] (unsigned char c) -> bool { return !std::ispunct(c); };
[] (unsigned char c) -> char { return std::toupper(c); };
[] (auto && w) -> bool { return std::ranges::distance(w) > 4; };

:views:
:views:
:views:
:views:

:filter(notPunct) // "This is an average boring sent..
:transform(toUpper) // "THIS IS AN AVERAGE BORING SENT.."
csplit(! ') // ["THIS", "IS", "AN", "AVERAGE", ..]
:filter(isLong); // ["AVERAGE", "BORING", "SENTENCE"]

// "This i1s an average, boring sen..

std::print("{::s}", view);

printLongWordsUppercase("This is a an average, boring sentence.");
// [AVERAGE, BORING, SENTENCE]

51/52

Thanks for attending the talk!

Questions?

My own ranges library:
https://github.com/h-2/radr

Blog:
https://hannes.hauswedell.net

LinkedIn:
https://www.linkedin.com/in/hannes-hauswedell/

52 /52

https://github.com/h-2/radr
https://github.com/h-2/radr
https://hannes.hauswedell.net/
https://hannes.hauswedell.net/
https://www.linkedin.com/in/hannes-hauswedell/
https://www.linkedin.com/in/hannes-hauswedell/

