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Why build a multi-language system?
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Why build a multi-language system?

Use the right tool for the job
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Why build a multi-language system?

Use the right tool for the job

A

Performance Critical Code Expressive API
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Why build a multi-language system?

Re-use existing code
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Why build a multi-language system?

Re-use existing code

Existing Codebase New Library
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How can we build a multi-language system?
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How can we build a multi-language system?

Inter-process
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How can we build a multi-language system?

Link Object Code
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Application Binary
Interface
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ABI

.S0

Quality Assurance

Copyright © 2025 Qt Group and its group companies. All rights reserved.
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ABI

Source Code
API

Io

SO
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.CPp Source Code
API

Compiler

APl is the source code level interface

Linker

SO
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.cpp

Compiler
APl is the source code level interface
.0
Linker Obje;thOde
.SO
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.cpp

Compiler
APl is the source code level interface
.0
COFF/PE .
: Object Code
ELF Linker ABI
Mach-0
SO
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.cpp

Compiler
APl is the source code level interface
.0
ABIl is the object code level interface
Linker
SO
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ABI

Source Code

API

ABI
Mach-0
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.cpp
What's inside object files?

Compiler

Linker

SO
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.cpp
What's inside object files?

Compiler Machine Code

Linker

SO
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.cpp
What's inside object files?

Compiler

.0 Static Data

Linker

SO
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.cpp
What's inside object files?

Compiler

Symbol Table

Linker

SO
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.Cpp
What's inside object files?

Compiler
.0
Symbol Table
Linker
linux $ nm --extern-only lib.so | c++filt
.SO
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.Cpp
What's inside object files?

Compiler
.0
Symbol Table
Linker
linux $ nm --extern-only lib.so | c++filt
:SO windows $ dumpbin /exports lib.dll
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ABI

Sys. \V/ Sys. Wi Win Win
Platform/C ABI éﬁg’: ARYchés AMDS ARM X644 x86
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ABI

The Layers of ABI

Sys. \V/ Sys. Wi Win Win
Platform/C ABI éﬁg’: ARYchés AMDS ARM X644 x86
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The Layers of ABI

Processor Architecture

Sys. V Sys. V Win Win Win
Platform/C ABI an ARTches AMD6 ARM X6 X86
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The Layers of ABI
Processor Architecture

Operating System
Platform/CABI  ARY ) A Ao A 86
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ABI

The Layers of ABI

Processor Architecture

5, Wi Win Win
Platform/C ABI éﬁg’: AALehs ANDon ARM X6k x86

Operating System

Compiler
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Sys. \/ Sys. V Win
Platform/C ABI o ARTches AMD6 ARM X6L X86
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Platform/C ABl is the
lowest common denominator

Sys. V Sys. V Win Win Win
Platform/C ABI o ARTches AMD6 ARM X6L X86
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Platform/C ABl is the
lowest common denominator

Sys. V Sys. V Win Win Win
Platform/C ABI o ARTches AMD6 ARM X6l X86
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/C ABI

:()
b
-
—
| , i Wi
Platform/C ABI NN AALeht ANDon ARM G x86

= Java

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 33



Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 34



Python ctypes

import ctypes

libc = ctypes.cdll.LoadLibrary("libc.s0.6")
libc.printf.restype = ctypes.c_int
libc.printf.argtypes = [

ctypes.c_char_p,

ctypes.c_char_p,

libc.printf(b"Hello, %S\n", "World!")
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Python ctypes

libc = ctypes.cdll.LoadLibrary("libc.so0.6") Load Shared Libraries
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Python ctypes

ctypes.c_int Basic C Types
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Python ctypes

libc.printf.restype = ctypes.c_int
libc.printf.argtypes = [
ctypes.c_char_p,

ctypes.c_char_p,

libc.printf(b"Hello, %S\n", "World!") C-like Function Signatures & Calls
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Python ctypes

import ctypes
class Point(ctypes.Structure):
_fields_ = [

("x", c_int),

("Y", c_int),

point = Point(10, 20)
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class Point(ctypes.Structure):

_fields_ = [
("x", c_int),

(uyu, c_int),

Quality Assurance

Python ctypes

C-like Structure Types
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Python ctypes

Most languages have similar APIs
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/C ABI

Platform/C ABI

9 ®
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'C ABI

A good foundation for cross-lang. interop. ((
p—
<

S

Platform/C ABI

Java
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'C ABI

Platform/C ABI

Calling Convention & Type Layout

9 ®
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Platform/C ABI:
Calling Convention
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Calling Convention
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Calling Convention

Caller & Callee Saved Registers
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Calling Convention

Passing Parameters & Return Values
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Calling Convention

Stack Frame Layout
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Registers Stack

%rax System V AMDG64 ABI

%rbx Previous Frame

%rcx
%rbp
%rsp
%rdx
%rsi
%rdi

%r8

%r9
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Registers

%rax
7%rbx
%rcx
%rbp
%rsp
%rdx
%rsi
%rdi

%r8

%r9

Quality Assurance

Stack

Previous Frame

Return Address

Previous %rbp

Params, Locals,

Temps. etc.

Red Zone

Current Stack Frame

System V AMD64 ABI

Push Return Address & Base-Pointer on Stack

Copyright © 2025 Qt Group and its group companies. All rights reserved.
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Registers Stack

%rax System V AMDG64 ABI

%rbx Previous Frame
%rex

Return Address
%rbp

Previous %rb : . o s o ° o °
%hrsp P Parameters in %rdi %rsi %rdx %rcx %r8 %r9o*
%rdx

Current Stack Frame
%rsi Params, Locals,
rrdi Temps. etc.
%r8
%r9
Red Zone
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Registers Stack

%rax System V AMDG64 ABI

%rbx Previous Frame
%rex

Return Address
%rbp

Previous %rbp
%rsp
%rdx

Current Stack Frame R t \/ | . . ot
Irsi params, Locals, eturn VJalues In %rax %rdx
rrdi Temps. etc.
%r8
%r9
Red Zone
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Registers Stack

%rax System V AMDG64 ABI

%rbx Previous Frame
%rex

Return Address
%rbp

Previous %rbp *
%rsp
%rdx

Current Stack Frame
%rsi Params, Locals,
} Temps. etc.
%rdi P
" .
%r8 Large params spill onto stack
%r9
Red Zone
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Registers

%rax
7%rbx
%rcx
%rbp
%rsp
%rdx
%rsi
%rdi

%r8

%r9

Quality Assurance

Stack

Previous Frame

Return Address

Previous %rbp

Params, Locals,
Temps. etc.

Red Zone

Current Stack Frame

System V AMD64 ABI

*%

**Large return values & non-trivial types by ref.
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C++ ABI: Non-trivial
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C++ ABI: Non-trivial

Non-trivial for the purposes of calls*
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C++ ABI: Non-trivial

Non-trivial for the purposes of calls*

*This is different from std: :is_trivial,
which is deprecated in C++26 (P3247).
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C++ ABI: Non-trivial

Non-trivial for the purposes of calls*

Non-trivial copy-constructor, move-constructor, or destructor
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C++ ABI: Non-trivial

Non-trivial for the purposes of calls*

Non-trivial copy-constructor, move-constructor, or destructor

Or all copy and move constructors are deleted
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C++ ABI: Calling Convention

#ifndef _MSC_VER
# define __stdcall __attribute__((stdcall))
#tendif

extern "C" void __stdcall baz();
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C++ ABI: Calling Convention

No Calling Convention in C++ Standard

#ifndef _MSC_VER
# define __stdcall __attribute__((stdcall))
#tendif

extern "C" void __stdcall baz();
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C++ ABI: Calling Convention

#ifndef _MSC_VER
# define __stdcall __attribute__((stdcall)) Implementation defined keywords/attributes
#endif

extern "C" void __stdcall baz();
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extern "C" void __stdcall baz();

Quality Assurance

C++ ABI: Calling Convention

Implementation defined keywords/attributes

__stdcall
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#ifndef _MSC_VER
# define __stdcall __attribute__((stdcall))
#tendif

extern "C" void __stdcall baz();

Quality Assurance

C++ ABI: Calling Convention

Implementation defined keywords/attributes

__stdcall
__attribute__((stdcall))
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C++ ABI: Language Linkage

extern "C" void foo();

void foo();

namespace bar {
extern "C" void foo();

void foo();

extern "C" foo(std::string str);

extern "C" bar(int &nhum);
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C++ ABI: Language Linkage

extern "C" void foo(); _ _ o
void £00(): extern "C" is alanguage linkage specification

namespace bar {
extern "C" void foo();

void foo();

extern "C" foo(std::string str);

extern "C" bar(int &num);
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C++ ABI: Language Linkage

extern "C" void foo();

namespace bar { Names refer to the same entity

extern "C" void foo();
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C++ ABI: Language Linkage

No effect on calling convention

extern "C" foo(std::string str);

extern "C" bar(int &nhum);
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void foo();
namespace bar {

void foo();

Quality Assurance

C++ ABI: Language Linkage

C++ language linkage is the default
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Calling Convention
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Calling Convention

Platforms usually have a default
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Calling Convention

Default is usually denoted C or cdecl
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Calling Convention

Windows x86 has stdcall, fastcall, thiscall
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Platform/C ABI:
Type Layout
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Type Layout
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Type Layout

Few guarantees in the C Standard
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Type Layout

A char is 1 byte (CHAR_BIT bits) with weakest (usually 1) alignment
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Type Layout

struct members are laid out in declaration order
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Type Layout

structs can have padding in the middle or at the end
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Type Layout

struct A { char x; };

struct B { char x; int y; };

struct C { char x; int y; char z; };
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Type Layout

struct A { char x; }; X
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Type Layout

struct B { char x; int y; };
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Type Layout

struct C { char x; int y; char z; }; X
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Type Layout

struct A { char x; };

struct B { char x; int y; };

struct C { char x; int y; char z; };
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Type Layout

Use static_assert to guarantee type layout

static_assert(sizeof(struct A) == 1);
static_assert(sizeof(struct B) == 8);
static_assert(sizeof(struct C) == 12);
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Type Layout

#include <stddef.h>

Use of fsetof for member offsets
struct B { char x; int y; };
static_assert(offsetof(struct B, y) == 4);
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#include <type_traits>

C++ Standard-Layout Types

struct A { int m; };

static_assert(std::is_standard_layout_v<A> == true);
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#include <type_traits>

C++ Standard-Layout Types

struct A ¢ int m; J; Standard-layout classes are useful for communication with

static_assert(std::is_standard_layout_v<A> == true); code written in other programming languages. - [class prop]p6
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C++ Standard-Layout Types

struct A { int m; };

static_assert(std: :is_standard_layout_v<A> == true);

AllNSDMs are also standard-layout
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C++ Standard-Layout Types

class B: public A { int m; ¥;

static_assert(std::is_standard_layout_v<B> == false); _
AllNSDMs are in the same base class
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#include <type_traits>

C++ Standard-Layout Types

class C { int m; public: int n; ¥; All NSDMs have the same access control*

static_assert(std::is_standard_layout_v<C> == false);
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#include <type_traits>

class C { int m; public: int n; };

static_assert(std::is_standard_layout_v<C> == false);

Quality Assurance

C++ Standard-Layout Types

All NSDMs have the same access control*

*Re-ordering based on access control is removed in C++23 (P1847),
but this requirement remains for standard-layout...

Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025
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C++ Standard-Layout Types

No virtual functions or virtual base classes

struct D { virtual void foo(); };

static_assert(std::is_standard_layout_v<D> == false);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 94



Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 95



Can we do better than a C API?
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Can we do better than a C API?

Need to define APIs in terms of C
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Can we do better than a C API?

Remove higher-level abstractions
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Can we do better than a C API?

Case Study: Rust/C++
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autocxx

bindgen e Rust/C++ Ecosystem

FFI
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autocxx

Built-in C-like FFI

bindgen CXX

FFI
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use std::0s::raw::*; RUSt FFI
#[repr(C)]
struct Point {

xX: c_int,

y: c_int,

unsafe extern "C" {
fn dist(first: Point, second: Point) -> c_float;
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use std::0s::raw::*; Rust FFI

Basic C types

c_int

c_int

c_float
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Rust FFI

#Lrepr(C)]
struct Point {
xX: c_int,
y: c_int, C-like structure types
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Rust FFI

C-like functions decls.
unsafe extern "C" {

fn dist(first: Point, second: Point) -> c_float;
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int *foo() {

return nullptr;

Rust FFI

unsafe extern "C" {
fn foo() -> Option<&i32>;

unsafe fn bar() {
if let Some(it) = foo() £
println!("{it}");
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int *foo() {

return nullptr;

Rust FFI

Nullable Pointer Optimization

unsafe extern "C" {
fn foo() -> Option<&i32>;

unsafe fn bar() {
if let Some(it) = foo() £
println!("{it}");
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int *foo() {

return nullptr;

Rust FFI

Nullable Pointer Optimization

fn foo() -> Option<&i32>; Option: :None has same repr. as nullptr
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unsafe fn bar() {
if let Some(it) = foo() £
println!("{it}");

Quality Assurance

Rust FFI

Nullable Pointer Optimization

Option: :None has same repr. as nullptr

ldiomatic handling in Rust

Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025
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void foo() try { .
bar(); Rust FFl: Unwind ABIs

} catch (const std:: runtime_error& e) £
std: :println("{}", e.what());

#[no_mangle]

pub extern "C-unwind" fn bar() {
let n = Box::new(42);
unsafe { baz(); }

¥

void baz() {

throw std::runtime_error("Hello from Rust!");
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Rust FFI

Rust has " -unwind" ABIs

pub extern "C-unwind" fn bar() {
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Rust FFI

catch (const std:: runtime_error& e) £
std: :println("{}", e.what());

C++ exceptions can passthrough Rust

throw std::runtime_error("Hello from Rust!");
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Rust FFI

let n = Box::new(42); Correct cleanup in Rust
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Rust FFI

Cannot catch foreign exceptions
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void foo() try { .
bar(); Exception ABI

} catch (const std:: runtime_error& e) £
std: :println("{}", e.what());

#[no_mangle]

pub extern "C-unwind" fn bar() {
let n = Box::new(42);
unsafe { baz(); }

¥

void baz() {

throw std::runtime_error("Hello from Rust!");
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void foo() try {

bar(); Exception ABI
} catch (const std:: runtime_error& e) £
std: :pr‘intln("{}" ; e.what()); UnWlnd Tables

#[no_mangle]

pub extern "C-unwind" fn bar() {
let n = Box::new(42);
unsafe { baz(); }

¥

void baz() {

throw std::runtime_error("Hello from Rust!");
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void foo() try {

bar(); Exception ABI
} catch (const std:: runtime_error& e) £
std: :pr‘intln("{}" ; e.what()); UnWlnd Tables

#[no_mangle]

pub extern "C-unwind" fn bar() {
let n = Box::new(42);
unsafe { baz(); }

¥

void baz() {

throw std::runtime_error("Hello from Rust!");
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void foo() try { .
bar(); Exception ABI

} catch (const std:: runtime_error& e) £
std: :println("{}", e.what());

#[no_mangle] Base Exception ABI

pub extern "C-unwind" fn bar() {
let n = Box::new(42);
unsafe { baz(); }

¥

void baz() {

throw std::runtime_error("Hello from Rust!");
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void foo() try { .
bar(); Exception ABI

} catch (const std:: runtime_error& e) £
std: :println("{}", e.what());

}

#[no_mangle] Base Exception ABI

pub extern "C-unwind" fn bar() { Unwinds the stack using unwind tables: libunwind
let n = Box::new(42);
unsafe { baz(); }

¥

void baz() {

throw std::runtime_error("Hello from Rust!");
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void foo() try { .
bar(); Exception ABI

} catch (const std:: runtime_error& e) £
std: :println("{}", e.what());

}

#[no_mangle] Base Exception ABI

pub extern "C-unwind" fn bar() { Unwinds the stack using unwind tables: libunwind
let n = Box::new(42);
unsafe { baz(); }

¥

void baz() {

throw std::runtime_error("Hello from Rust!");
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void foo() try { .
bar(); Exception ABI

} catch (const std:: runtime_error& e) {
std: :println("{}", e.what());

3

#[no_mangle] Base Exception ABI

pub extern "C-unwind" fn bar() { Unwinds the stack using unwind tables: libunwind
let n = Box::new(42);
unsafe { baz(); }

}

void baz() {

throw std::runtime_error("Hello from Rust!");
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void foo() try { .
bar(); Exception ABI

} catch (const std:: runtime_error& e) £
std: :println("{}", e.what());

#[no_mangle]

pub extern "C-unwind" fn bar() {
let n = Box::new(42);
unsafe { baz(); }

) Language Exception ABI

void baz() {

throw std::runtime_error("Hello from Rust!");
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void foo() try { .
bar(); Exception ABI

} catch (const std:: runtime_error& e) £
std: :println("{}", e.what());

Personality Routine

#[no_mangle]

pub extern "C-unwind" fn bar() {
let n = Box::new(42);
unsafe { baz(); }

} Personality Routine

Language Exception ABI
Personality routine

void baz() {

throw std::runtime_error("Hello from Rust!");
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autocxx

bindgen oxx Automated binding generator

FFI
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struct Point {

bindgen

int x;

int y;
7
#Lrepr(C)]

#[derive(Debug, Copy, Clone)]
pub struct Point {
pub x: c_int,

pub y: c_int,
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struct Point {

bindgen

int x;

int y;
3. Built with libclang
#Lrepr(C)]

#[derive(Debug, Copy, Clone)]
pub struct Point {
pub x: c_int,

pub y: c_int,
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struct Point {

bindgen

int x;
int y;
¥
Auto generates C/C++-Rust bindings
#Lrepr(C)]

#[derive(Debug, Copy, Clone)]
pub struct Point {
pub x: c_int,

pub y: c_int,
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struct Point {

bindgen

int x;

int y;
}i
#Lrepr(C)]

Command line tool or library for build integration
#[derive(Debug, Copy, Clone)]

pub struct Point {
pub x: c_int,

pub y: c_int,
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struct Point {

bindgen

int x;

int y;
7
#Lrepr(C)]

Command line tool or library for build integration
#[derive(Debug, Copy, Clone)]

pub struct Point {

pub x: c_int, $ bindgen foo.hpp > out.rs

pub y: c_int,
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bindgen

const _: () = {
["Size of Point"]
[::std::mem::size_of::<Point>() - 8usizel;
["Alignment of Point"]
[::std::mem::align_of::<Point>() - 4usizel;
["Offset of field: Point::x"]
[::std::mem::0ffset_of!(Point, x) - Qusizel;
["Offset of field: Point::y"]
[::std::mem::offset_of!(Point, y) - 4usizel;
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bindgen

const _: () = {
["Size of Point"]
[::std::mem::size_of::<Point>() - 8usizel];
["Alignment of Point"]
[::std::mem::align_of::<Point>() - 4usizel;
["0ffset of field: Point::x"]
[::std::mem::0ffset_of!(Point, x) - Qusizel;
["Offset of field: Point::y"]
[::std::mem::offset_of!(Point, y) - 4usizel;

Static assertions for size and offset
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int foo(char x);

bindgen: Function Overloading

int foo(char x, int y);

unsafe extern "C" {
#[1ink_name = "_Z3fooc"]

pub fn foo(x: c_char) -> c_int;

#[1ink_name = "_Z3fooci"]

pub fn fool(x: c_char, y: c_int) -> c_int;
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bindgen: Function Overloading

#[1ink_name = "_Z3fooc"] Auto-generates mangled names

#[1ink_name = "_Z3fooci"]
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bindgen: Function Overloading

pub fn foo(x: c_char) -> c_int;

pub fn fool(x: c_char, y: c_int) -> c_int; Note fool: No overloading in Rust
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template<typename T>
struct S {

T value;

bindgen: Templates

¥
void foo(S<int> s);

#[repr(C)]
pub struct S<T> {
pub value: T,
¥
unsafe extern "C" {
#[1link_name = "_Z3f00lSTiE"]
pub fn foo(s: S<c_int>);
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template<typename T> bindgen- Templates
struct S { .

T value;

;. Simple Templates use Rust Generics

#[repr(C)]
pub struct S<T> {
pub value: T,
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bindgen: Templates

Simple Templates use Rust Generics

void foo(S<int> s);

unsafe extern "C" {
#[1ink_name = "_Z3foolSIiE"]
pub fn foo(s: S<c_int>);

Correct Usage as Parameter
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bindgen: Templates

Simple Templates use Rust Generics

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 140



bindgen: Templates

No method generation
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bindgen: Templates

No static assertions generated
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Polymorphic Types

struct S {
int i;
virtual void foo();

75
static_assert(sizeof(S) == 16);
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Polymorphic Types

\/ptr inserted into layout

vptr
i
struct S {
int i;

virtual void foo();

75
static_assert(sizeof(S) == 16);
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Polymorphic Types

void (*foo)()

vptr vtable contains method overrides, RTTI, & more
i
struct S §
int i;

virtual void foo();

75
static_assert(sizeof(S) == 16);
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Polymorphic Types

void (*foo)()

vptr
i
vtable layout & behavior is complicated
struct S {
int i;

virtual void foo();

75
static_assert(sizeof(S) == 16);
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bindgen: Polymorphic Types

struct Base {
int i;
virtual void foo();

¥

struct Derived : Base {
int j;
void foo() override;

75
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#[lrepr(C)] . .
P | | bindgen: Polymorphic Types
pub struct Base__bindgen_vtable(c_void);
#[repr(C)]
pub struct Base {
pub vtable_: *const Base__bindgen_vtable,

pub i: c_int,

#[Lrepr(C)]
pub struct Derived {
pub _base: Base,

pub j: c_int,

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 148



#[repr(C)]

pub struct Base__bindgen_vtable(c_void);

bindgen: Polymorphic Types

pub vtable_: *const Base__bindgen_vtable, Base has a vptr
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bindgen: Polymorphic Types

unsafe extern "C" {
#[1link_name = "_ZN4Base3fooEv"]

pub fn Base_foo(this: *mut c_void);

#[1link_name = "_ZN7Derived3fooEv"]

pub fn Derived_foo(this: *mut c_void);
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bindgen: Polymorphic Types

unsafe extern "C" {
#[1link_name = "_ZN4Base3fooEv"]
pub fn Base_foo(this: *mut c_void); Pure FFI functions; no methods

#[1link_name = "_ZN7Derived3fooEv"]

pub fn Derived_foo(this: *mut c_void);
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bindgen: Polymorphic Types

*mut c_void

*mut c_void Raw void pointers
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bindgen: Polymorphic Types

fn main() {
let mut d = get_derived();
unsafe {

Derived_foo(&mut d as *mut _ as *mut c_void);
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bindgen: Polymorphic Types

unsafe {
Derived_foo(&mut d as *mut _ as *mut c_void); Unsafe... and a bit messy "
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bindgen: Polymorphic Types

bindgen only tries to get the layout correct
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autocxx

Automated bindings + bridged types

bindgen CXX

FFI
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CXX
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CXX

Bindings for types like std: : stringand std: : vector
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CXX

Special consideration given to ownership
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CXX

Patterns for error handling
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CXX

#[cxx: :bridge]
mod ffi {
unsafe extern "C++" {
include!("foo.hpp");
type Foo;
fn new_foo() -> UniquePtr<Foo>;

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 6.11.2025 162



CXX

include! ("foo.hpp"); Include C/C++ files
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CXX

15192 |70 Declare types & functions
fn new_foo() -> UniquePtr<Foo>;
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Move Semantics

fn foo(s: String) {}

fn main() {
let s = "Hello, Meeting C++".to_string();
foo(s); // Move

foo(s); // Error: use of moved value: "s

~
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Move Semantics

let s = "Hello, Meeting C++".to_string();
foo(s); // Move
foo(s); // Error: use of moved value: s Rust has destructive moves
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Move Semantics

fn main() {
let s = "Hello, Meeting C++".to_string();

! No destructor call for s
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Move Semantics

void foo(std::string s) {}

int main() {
auto s = std::string("Hello, Meeting C++");
foo(std: :move(s)); // Move
foo(s); // 0Ok

Y // "s.~s()°
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Move Semantics

auto s = std::string("Hello, Meeting C++");
foo(std: :move(s)); // Move
foo(s); // Ok C++ leaves s in a valid state
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Move Semantics

int main() {

auto s = std::string("Hello, Meeting C++");

} // “s.~S()° Destructor is still run
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cxx: Types
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cxx: Types

Shared
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cxx: Types

Shared Opaque
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cxx: Types

Shared Opaque Extern
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cxx: Types
Shared Opaque Extern
\/isible to both languages
Passed by value

Trivial types
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cxx: Types
Shared Opaque Extern
Visible to one language
Handled behind indirection

Non-trivial types
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cxx: Types
Shared Opaque Extern
Defined outside of cxx

Opaque or Trivial
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cxx: Types

Opaque

Handled behind indirection
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truct S
° '””25() _{ cxx: Opaque C++ Types
7

std: :unique_ptr<S> make();

#[cxx: :bridge]
mod ffi {
unsafe extern "C++" {
include!("foo.hpp");
type S;
fn make() -> UniquePtr<S>;
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cxx: Opaque C++ Types

std: :unique_ptr<S> make();

fn make() -> UniquePtr<sS>; Handled behind an indirection
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cxx: Opaque C++ Types

int foo() const;

fn foo(self: &S); Declare methods as expected, but...
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struct S {

~S();
void bar();

cxx: Opaque C++ Types

¥

#[cxx: :bridge]
mod ffi {
unsafe extern "C++" {
include!("foo.hpp");
type S;
fn bar(self: Pin<&mut S>);
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cxx: Opaque C++ Types

void bar();

fn bar(self: Pin<&mut S>); Non-const methods require Pin
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cxx: Opaque C++ Types

&mut T can be used to swap memory

&mut S

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 184



Quality Assurance

cxx: Opaque C++ Types

&mut T can be used to swap memory

use std::mem::{swap, take, replace};

pub const fn swap<T>(x: &mut T, y: &mut T);
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cxx: Types

Extern

Opaque or Trivial
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struct S { .
~5(): cxx: Trivial Extern C++ Types

7

struct S(i32);
unsafe impl ExternType for S {
type Id = cxx::type_id!("S");

type Kind = cxx::kind::Trivial;

3
#[cxx: :bridge]
mod ffi {
unsafe extern "C++" {
include!("foo.hpp");
type S = super::S;
¥
3
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cxx: Trivial Extern C++ Types

struct S(i32); Existing (bindgen or hand-written) bindings

type S = super::S;
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cxx: Trivial Extern C++ Types

Trivial = subject to Rust move semantics*
type Kind = cxx::kind::Trivial;
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cxx: Trivial Extern C++ Types

Trivial = subject to Rust move semantics*
type Kind = cxx::kind::Trivial;

*C++26 introduces std': :is_trivially relocatable (P2786)

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 190



fn foo() -> Result<(), String> {

, cxx: Error Handling
Err("Rust Error".to_string())

#[cxx: :bridge]
mod ffi {
extern "Rust" {
fn foo() -> Result<()>;
¥
unsafe extern "C++" {
fn bar() -> Result<()>;
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cxx: Error Handling

C++ exceptions to Rust Result<T, E>

extern "Rust" {
fn foo() -> Result<()>;
}

unsafe extern "C++" {
fn bar() -> Result<()>;
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cxx: Error Handling

C++ exceptions to Rust Result<T, E>

Converted at the boundary

extern "Rust" {
fn foo() -> Result<()>;
}

unsafe extern "C++" {
fn bar() -> Result<()>;
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cxx: Error Handling

template <typename Try, typename Fail> C++ exceptions to Rust Result<T, E>

static void trycatch(Try &&func, Fail &&fail) noexcept
try {

func(); Custom conversion function
} catch (const std::exception &e) {

fail(e.what());
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autocxx

bindgen o Glues bindgen and cxx together

FFI
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include_cpp! {
autocxx

#include "foo.hpp"

safety!(unsafe)

generate!("Foo")

generate!("Bar")

¥

fn main() €
let foo = ffi::Foo::new(10.into());
println!("{}", foo.val);
let mut bar = ffi::Bar::new(20.into())

.within_unique_ptr();

println!("{}", bar.pin_mut().val());

5

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 197



include_cpp! {

autocxx
#include "foo.hpp"
safety!(unsafe) _
generate! ("Foo") Glues bindgen and cxx together

generate!("Bar")
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autocxx

Provides a fluent bridge
fn main() {
let foo = ffi::Foo::new(10.into());
println!("{}", foo.val);

let mut bar = ffi::Bar::new(20.into())

.within_unique_ptr();
println!("{3", bar.pin_mut().val());
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autocxx

let foo = ffi::Foo::new(10.into());

Trivial types are simple values
println!("{}", foo.val); YP P
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autocxx

let mut bar = ffi::Bar::new(20.into())
.within_unique_ptr(); Non-trivial types behind an indirection + Pin
println!("{}", bar.pin_mut().val());
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Summary

Use C as a foundation

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 203



Summary

Static assert type layout
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Summary

Use code generation to overcome differences
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Summary

Handle exceptions at the boundary
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