ilding Bridges

C++ Interop., Foreign Function Interfaces & ABI

Quality Assurance

Gareth Williamson
Software Engineer

Quality Assurance

Why build a multi-language system?

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025

Why build a multi-language system?

Use the right tool for the job

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025

Why build a multi-language system?

Use the right tool for the job

A

Performance Critical Code Expressive API

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025

Why build a multi-language system?

Re-use existing code

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025

Why build a multi-language system?

Re-use existing code

Existing Codebase New Library

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025

How can we build a multi-language system?

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025

How can we build a multi-language system?

Inter-process

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025

How can we build a multi-language system?

Link Object Code

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 10

Application Binary
Interface

Quallt\[Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 11

ABI

.S0

Quality Assurance

Copyright © 2025 Qt Group and its group companies. All rights reserved.

11/6/2025

12

ABI

Source Code
API

Io

SO

Quallt\[Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 13

.CPp Source Code
API

Compiler

APl is the source code level interface

Linker

SO

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 14

.cpp

Compiler
APl is the source code level interface
.0
Linker Obje;thOde
.SO

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 15

.cpp

Compiler
APl is the source code level interface
.0
COFF/PE .
: Object Code
ELF Linker ABI
Mach-0
SO

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 16

.cpp

Compiler
APl is the source code level interface
.0
ABIl is the object code level interface
Linker
SO

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 17

ABI

Source Code

API

ABI
Mach-0

Quallt\[Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 18

.cpp
What's inside object files?

Compiler

Linker

SO

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 19

.cpp
What's inside object files?

Compiler Machine Code

Linker

SO

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 20

.cpp
What's inside object files?

Compiler

.0 Static Data

Linker

SO

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 21

.cpp
What's inside object files?

Compiler

Symbol Table

Linker

SO

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 22

.Cpp
What's inside object files?

Compiler
.0
Symbol Table
Linker
linux $ nm --extern-only lib.so | c++filt
.SO

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 23

.Cpp
What's inside object files?

Compiler
.0
Symbol Table
Linker
linux $ nm --extern-only lib.so | c++filt
:SO windows $ dumpbin /exports lib.dll

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 24

ABI

Sys. \V/ Sys. Wi Win Win
Platform/C ABI éﬁg’: ARYchés AMDS ARM X644 x86

Quallt\[Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 25

ABI

The Layers of ABI

Sys. \V/ Sys. Wi Win Win
Platform/C ABI éﬁg’: ARYchés AMDS ARM X644 x86

Quallt\[Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 26

The Layers of ABI

Processor Architecture

Sys. V Sys. V Win Win Win
Platform/C ABI an ARTches AMD6 ARM X6 X86

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 27

The Layers of ABI
Processor Architecture

Operating System
Platform/CABI ARY) A Ao A 86

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 28

ABI

The Layers of ABI

Processor Architecture

5, Wi Win Win
Platform/C ABI éﬁg’: AALehs ANDon ARM X6k x86

Operating System

Compiler

Quallt\[Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025

Sys. \/ Sys. V Win
Platform/C ABI o ARTches AMD6 ARM X6L X86

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 30

Platform/C ABl is the
lowest common denominator

Sys. V Sys. V Win Win Win
Platform/C ABI o ARTches AMD6 ARM X6L X86

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 31

Platform/C ABl is the
lowest common denominator

Sys. V Sys. V Win Win Win
Platform/C ABI o ARTches AMD6 ARM X6l X86

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 32

/C ABI

:()
b
-
—
| , i Wi
Platform/C ABI NN AALeht ANDon ARM G x86

= Java

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 33

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 34

Python ctypes

import ctypes

libc = ctypes.cdll.LoadLibrary("libc.s0.6")
libc.printf.restype = ctypes.c_int
libc.printf.argtypes = [

ctypes.c_char_p,

ctypes.c_char_p,

libc.printf(b"Hello, %S\n", "World!")

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 35

Python ctypes

libc = ctypes.cdll.LoadLibrary("libc.so0.6") Load Shared Libraries

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 36

Python ctypes

ctypes.c_int Basic C Types

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 37

Python ctypes

libc.printf.restype = ctypes.c_int
libc.printf.argtypes = [
ctypes.c_char_p,

ctypes.c_char_p,

libc.printf(b"Hello, %S\n", "World!") C-like Function Signatures & Calls

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 38

Python ctypes

import ctypes
class Point(ctypes.Structure):
fields = [

("x", c_int),

("Y", c_int),

point = Point(10, 20)

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 39

class Point(ctypes.Structure):

fields = [
("x", c_int),

(uyu, c_int),

Quality Assurance

Python ctypes

C-like Structure Types

Copyright © 2025 Qt Group and its group companies. All rights reserved.

11/6/2025

40

Python ctypes

Most languages have similar APIs

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 41

/C ABI

Platform/C ABI

9 ®

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 42

'C ABI

A good foundation for cross-lang. interop. ((
p—
<

S

Platform/C ABI

Java

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 43

'C ABI

Platform/C ABI

Calling Convention & Type Layout

9 ®

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 L4

Platform/C ABI:
Calling Convention

Quallt\[Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 45

Calling Convention

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 46

Calling Convention

Caller & Callee Saved Registers

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 47

Calling Convention

Passing Parameters & Return Values

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 48

Calling Convention

Stack Frame Layout

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 49

Registers Stack

%rax System V AMDG64 ABI

%rbx Previous Frame

%rcx
%rbp
%rsp
%rdx
%rsi
%rdi

%r8

%r9

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 50

Registers

%rax
7%rbx
%rcx
%rbp
%rsp
%rdx
%rsi
%rdi

%r8

%r9

Quality Assurance

Stack

Previous Frame

Return Address

Previous %rbp

Params, Locals,

Temps. etc.

Red Zone

Current Stack Frame

System V AMD64 ABI

Push Return Address & Base-Pointer on Stack

Copyright © 2025 Qt Group and its group companies. All rights reserved.

11/6/2025

51

Registers Stack

%rax System V AMDG64 ABI

%rbx Previous Frame
%rex

Return Address
%rbp

Previous %rb : . o s o ° o °
%hrsp P Parameters in %rdi %rsi %rdx %rcx %r8 %r9o*
%rdx

Current Stack Frame
%rsi Params, Locals,
rrdi Temps. etc.
%r8
%r9
Red Zone

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 52

Registers Stack

%rax System V AMDG64 ABI

%rbx Previous Frame
%rex

Return Address
%rbp

Previous %rbp
%rsp
%rdx

Current Stack Frame R t \/ | . . ot
Irsi params, Locals, eturn VJalues In %rax %rdx
rrdi Temps. etc.
%r8
%r9
Red Zone

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 53

Registers Stack

%rax System V AMDG64 ABI

%rbx Previous Frame
%rex

Return Address
%rbp

Previous %rbp *
%rsp
%rdx

Current Stack Frame
%rsi Params, Locals,
} Temps. etc.
%rdi P
" .
%r8 Large params spill onto stack
%r9
Red Zone

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 54

Registers

%rax
7%rbx
%rcx
%rbp
%rsp
%rdx
%rsi
%rdi

%r8

%r9

Quality Assurance

Stack

Previous Frame

Return Address

Previous %rbp

Params, Locals,
Temps. etc.

Red Zone

Current Stack Frame

System V AMD64 ABI

*%

**Large return values & non-trivial types by ref.

Copyright © 2025 Qt Group and its group companies. All rights reserved.

11/6/2025

55

C++ ABI: Non-trivial

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 56

C++ ABI: Non-trivial

Non-trivial for the purposes of calls*

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 57

C++ ABI: Non-trivial

Non-trivial for the purposes of calls*

*This is different from std: :is_trivial,
which is deprecated in C++26 (P3247).

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 58

C++ ABI: Non-trivial

Non-trivial for the purposes of calls*

Non-trivial copy-constructor, move-constructor, or destructor

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 59

C++ ABI: Non-trivial

Non-trivial for the purposes of calls*

Non-trivial copy-constructor, move-constructor, or destructor

Or all copy and move constructors are deleted

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 60

C++ ABI: Calling Convention

#ifndef _MSC_VER
define __stdcall __attribute__((stdcall))
#tendif

extern "C" void __stdcall baz();

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 61

C++ ABI: Calling Convention

No Calling Convention in C++ Standard

#ifndef _MSC_VER
define __stdcall __attribute__((stdcall))
#tendif

extern "C" void __stdcall baz();

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 62

C++ ABI: Calling Convention

#ifndef _MSC_VER
define __stdcall __attribute__((stdcall)) Implementation defined keywords/attributes
#endif

extern "C" void __stdcall baz();

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 63

extern "C" void __stdcall baz();

Quality Assurance

C++ ABI: Calling Convention

Implementation defined keywords/attributes

__stdcall

Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025

64

#ifndef _MSC_VER
define __stdcall __attribute__((stdcall))
#tendif

extern "C" void __stdcall baz();

Quality Assurance

C++ ABI: Calling Convention

Implementation defined keywords/attributes

__stdcall
__attribute__((stdcall))

Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025

65

C++ ABI: Language Linkage

extern "C" void foo();

void foo();

namespace bar {
extern "C" void foo();

void foo();

extern "C" foo(std::string str);

extern "C" bar(int &nhum);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 66

C++ ABI: Language Linkage

extern "C" void foo(); _ _ o
void £00(): extern "C" is alanguage linkage specification

namespace bar {
extern "C" void foo();

void foo();

extern "C" foo(std::string str);

extern "C" bar(int &num);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 67

C++ ABI: Language Linkage

extern "C" void foo();

namespace bar { Names refer to the same entity

extern "C" void foo();

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 68

C++ ABI: Language Linkage

No effect on calling convention

extern "C" foo(std::string str);

extern "C" bar(int &nhum);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 69

void foo();
namespace bar {

void foo();

Quality Assurance

C++ ABI: Language Linkage

C++ language linkage is the default

Copyright © 2025 Qt Group and its group companies. All rights reserved.

11/6/2025

70

Calling Convention

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 71

Calling Convention

Platforms usually have a default

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 72

Calling Convention

Default is usually denoted C or cdecl

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 73

Calling Convention

Windows x86 has stdcall, fastcall, thiscall

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 74

Platform/C ABI:
Type Layout

Quallt\[Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 75

Type Layout

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 76

Type Layout

Few guarantees in the C Standard

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 77

Type Layout

A char is 1 byte (CHAR_BIT bits) with weakest (usually 1) alignment

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 78

Type Layout

struct members are laid out in declaration order

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 79

Type Layout

structs can have padding in the middle or at the end

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 80

Type Layout

struct A { char x; };

struct B { char x; int y; };

struct C { char x; int y; char z; };

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 81

Type Layout

struct A { char x; }; X

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 82

Type Layout

struct B { char x; int y; };

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 83

Type Layout

struct C { char x; int y; char z; }; X

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 84

Type Layout

struct A { char x; };

struct B { char x; int y; };

struct C { char x; int y; char z; };

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 85

Type Layout

Use static_assert to guarantee type layout

static_assert(sizeof(struct A) == 1);
static_assert(sizeof(struct B) == 8);
static_assert(sizeof(struct C) == 12);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 86

Type Layout

#include <stddef.h>

Use of fsetof for member offsets
struct B { char x; int y; };
static_assert(offsetof(struct B, y) == 4);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 87

#include <type_traits>

C++ Standard-Layout Types

struct A { int m; };

static_assert(std::is_standard_layout_v<A> == true);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 88

#include <type_traits>

C++ Standard-Layout Types

struct A ¢ int m; J; Standard-layout classes are useful for communication with

static_assert(std::is_standard_layout_v<A> == true); code written in other programming languages. - [class prop]p6

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 89

C++ Standard-Layout Types

struct A { int m; };

static_assert(std: :is_standard_layout_v<A> == true);

AllNSDMs are also standard-layout

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 90

C++ Standard-Layout Types

class B: public A { int m; ¥;

static_assert(std::is_standard_layout_v == false); _
AllNSDMs are in the same base class

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 91

#include <type_traits>

C++ Standard-Layout Types

class C { int m; public: int n; ¥; All NSDMs have the same access control*

static_assert(std::is_standard_layout_v<C> == false);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 92

#include <type_traits>

class C { int m; public: int n; };

static_assert(std::is_standard_layout_v<C> == false);

Quality Assurance

C++ Standard-Layout Types

All NSDMs have the same access control*

*Re-ordering based on access control is removed in C++23 (P1847),
but this requirement remains for standard-layout...

Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025

93

C++ Standard-Layout Types

No virtual functions or virtual base classes

struct D { virtual void foo(); };

static_assert(std::is_standard_layout_v<D> == false);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 94

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 95

Can we do better than a C API?

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 96

Can we do better than a C API?

Need to define APIs in terms of C

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 97

Can we do better than a C API?

Remove higher-level abstractions

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 98

Can we do better than a C API?

Case Study: Rust/C++

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 99

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 100

autocxx

bindgen e Rust/C++ Ecosystem

FFI

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 6.11.2025 101

autocxx

Built-in C-like FFI

bindgen CXX

FFI

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 6.11.2025 102

use std::0s::raw::*; RUSt FFI
#[repr(C)]
struct Point {

xX: c_int,

y: c_int,

unsafe extern "C" {
fn dist(first: Point, second: Point) -> c_float;

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 103

use std::0s::raw::*; Rust FFI

Basic C types

c_int

c_int

c_float

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 104

Rust FFI

#Lrepr(C)]
struct Point {
xX: c_int,
y: c_int, C-like structure types

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 105

Rust FFI

C-like functions decls.
unsafe extern "C" {

fn dist(first: Point, second: Point) -> c_float;

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 106

int *foo() {

return nullptr;

Rust FFI

unsafe extern "C" {
fn foo() -> Option<&i32>;

unsafe fn bar() {
if let Some(it) = foo() £
println!("{it}");

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 107

int *foo() {

return nullptr;

Rust FFI

Nullable Pointer Optimization

unsafe extern "C" {
fn foo() -> Option<&i32>;

unsafe fn bar() {
if let Some(it) = foo() £
println!("{it}");

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 108

int *foo() {

return nullptr;

Rust FFI

Nullable Pointer Optimization

fn foo() -> Option<&i32>; Option: :None has same repr. as nullptr

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 109

unsafe fn bar() {
if let Some(it) = foo() £
println!("{it}");

Quality Assurance

Rust FFI

Nullable Pointer Optimization

Option: :None has same repr. as nullptr

ldiomatic handling in Rust

Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025

110

void foo() try { .
bar(); Rust FFl: Unwind ABIs

} catch (const std:: runtime_error& e) £
std: :println("{}", e.what());

#[no_mangle]

pub extern "C-unwind" fn bar() {
let n = Box::new(42);
unsafe { baz(); }

¥

void baz() {

throw std::runtime_error("Hello from Rust!");

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 111

Rust FFI

Rust has " -unwind" ABIs

pub extern "C-unwind" fn bar() {

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 112

Rust FFI

catch (const std:: runtime_error& e) £
std: :println("{}", e.what());

C++ exceptions can passthrough Rust

throw std::runtime_error("Hello from Rust!");

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 113

Rust FFI

let n = Box::new(42); Correct cleanup in Rust

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 114

Rust FFI

Cannot catch foreign exceptions

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 115

void foo() try { .
bar(); Exception ABI

} catch (const std:: runtime_error& e) £
std: :println("{}", e.what());

#[no_mangle]

pub extern "C-unwind" fn bar() {
let n = Box::new(42);
unsafe { baz(); }

¥

void baz() {

throw std::runtime_error("Hello from Rust!");

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 116

void foo() try {

bar(); Exception ABI
} catch (const std:: runtime_error& e) £
std: :pr‘intln("{}" ; e.what()); UnWlnd Tables

#[no_mangle]

pub extern "C-unwind" fn bar() {
let n = Box::new(42);
unsafe { baz(); }

¥

void baz() {

throw std::runtime_error("Hello from Rust!");

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 117

void foo() try {

bar(); Exception ABI
} catch (const std:: runtime_error& e) £
std: :pr‘intln("{}" ; e.what()); UnWlnd Tables

#[no_mangle]

pub extern "C-unwind" fn bar() {
let n = Box::new(42);
unsafe { baz(); }

¥

void baz() {

throw std::runtime_error("Hello from Rust!");

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 118

void foo() try { .
bar(); Exception ABI

} catch (const std:: runtime_error& e) £
std: :println("{}", e.what());

#[no_mangle] Base Exception ABI

pub extern "C-unwind" fn bar() {
let n = Box::new(42);
unsafe { baz(); }

¥

void baz() {

throw std::runtime_error("Hello from Rust!");

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 119

void foo() try { .
bar(); Exception ABI

} catch (const std:: runtime_error& e) £
std: :println("{}", e.what());

}

#[no_mangle] Base Exception ABI

pub extern "C-unwind" fn bar() { Unwinds the stack using unwind tables: libunwind
let n = Box::new(42);
unsafe { baz(); }

¥

void baz() {

throw std::runtime_error("Hello from Rust!");

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 120

void foo() try { .
bar(); Exception ABI

} catch (const std:: runtime_error& e) £
std: :println("{}", e.what());

}

#[no_mangle] Base Exception ABI

pub extern "C-unwind" fn bar() { Unwinds the stack using unwind tables: libunwind
let n = Box::new(42);
unsafe { baz(); }

¥

void baz() {

throw std::runtime_error("Hello from Rust!");

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 121

void foo() try { .
bar(); Exception ABI

} catch (const std:: runtime_error& e) {
std: :println("{}", e.what());

3

#[no_mangle] Base Exception ABI

pub extern "C-unwind" fn bar() { Unwinds the stack using unwind tables: libunwind
let n = Box::new(42);
unsafe { baz(); }

}

void baz() {

throw std::runtime_error("Hello from Rust!");

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 122

void foo() try { .
bar(); Exception ABI

} catch (const std:: runtime_error& e) £
std: :println("{}", e.what());

#[no_mangle]

pub extern "C-unwind" fn bar() {
let n = Box::new(42);
unsafe { baz(); }

) Language Exception ABI

void baz() {

throw std::runtime_error("Hello from Rust!");

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 123

void foo() try { .
bar(); Exception ABI

} catch (const std:: runtime_error& e) £
std: :println("{}", e.what());

Personality Routine

#[no_mangle]

pub extern "C-unwind" fn bar() {
let n = Box::new(42);
unsafe { baz(); }

} Personality Routine

Language Exception ABI
Personality routine

void baz() {

throw std::runtime_error("Hello from Rust!");

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 124

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 125

autocxx

bindgen oxx Automated binding generator

FFI

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 6.11.2025 126

struct Point {

bindgen

int x;

int y;
7
#Lrepr(C)]

#[derive(Debug, Copy, Clone)]
pub struct Point {
pub x: c_int,

pub y: c_int,

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 127

struct Point {

bindgen

int x;

int y;
3. Built with libclang
#Lrepr(C)]

#[derive(Debug, Copy, Clone)]
pub struct Point {
pub x: c_int,

pub y: c_int,

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 128

struct Point {

bindgen

int x;
int y;
¥
Auto generates C/C++-Rust bindings
#Lrepr(C)]

#[derive(Debug, Copy, Clone)]
pub struct Point {
pub x: c_int,

pub y: c_int,

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 129

struct Point {

bindgen

int x;

int y;
}i
#Lrepr(C)]

Command line tool or library for build integration
#[derive(Debug, Copy, Clone)]

pub struct Point {
pub x: c_int,

pub y: c_int,

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 130

struct Point {

bindgen

int x;

int y;
7
#Lrepr(C)]

Command line tool or library for build integration
#[derive(Debug, Copy, Clone)]

pub struct Point {

pub x: c_int, $ bindgen foo.hpp > out.rs

pub y: c_int,

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 131

bindgen

const _: () = {
["Size of Point"]
[::std::mem::size_of::<Point>() - 8usizel;
["Alignment of Point"]
[::std::mem::align_of::<Point>() - 4usizel;
["Offset of field: Point::x"]
[::std::mem::0ffset_of!(Point, x) - Qusizel;
["Offset of field: Point::y"]
[::std::mem::offset_of!(Point, y) - 4usizel;

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 132

bindgen

const _: () = {
["Size of Point"]
[::std::mem::size_of::<Point>() - 8usizel];
["Alignment of Point"]
[::std::mem::align_of::<Point>() - 4usizel;
["0ffset of field: Point::x"]
[::std::mem::0ffset_of!(Point, x) - Qusizel;
["Offset of field: Point::y"]
[::std::mem::offset_of!(Point, y) - 4usizel;

Static assertions for size and offset

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 133

int foo(char x);

bindgen: Function Overloading

int foo(char x, int y);

unsafe extern "C" {
#[1ink_name = "_Z3fooc"]

pub fn foo(x: c_char) -> c_int;

#[1ink_name = "_Z3fooci"]

pub fn fool(x: c_char, y: c_int) -> c_int;

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 134

bindgen: Function Overloading

#[1ink_name = "_Z3fooc"] Auto-generates mangled names

#[1ink_name = "_Z3fooci"]

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 135

bindgen: Function Overloading

pub fn foo(x: c_char) -> c_int;

pub fn fool(x: c_char, y: c_int) -> c_int; Note fool: No overloading in Rust

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 136

template<typename T>
struct S {

T value;

bindgen: Templates

¥
void foo(S<int> s);

#[repr(C)]
pub struct S<T> {
pub value: T,
¥
unsafe extern "C" {
#[1link_name = "_Z3f00lSTiE"]
pub fn foo(s: S<c_int>);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 137

template<typename T> bindgen- Templates
struct S { .

T value;

;. Simple Templates use Rust Generics

#[repr(C)]
pub struct S<T> {
pub value: T,

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 138

bindgen: Templates

Simple Templates use Rust Generics

void foo(S<int> s);

unsafe extern "C" {
#[1ink_name = "_Z3foolSIiE"]
pub fn foo(s: S<c_int>);

Correct Usage as Parameter

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 139

bindgen: Templates

Simple Templates use Rust Generics

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 140

bindgen: Templates

No method generation

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 141

bindgen: Templates

No static assertions generated

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 142

Polymorphic Types

struct S {
int i;
virtual void foo();

75
static_assert(sizeof(S) == 16);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 143

Polymorphic Types

\/ptr inserted into layout

vptr
i
struct S {
int i;

virtual void foo();

75
static_assert(sizeof(S) == 16);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 144

Polymorphic Types

void (*foo)()

vptr vtable contains method overrides, RTTI, & more
i
struct S §
int i;

virtual void foo();

75
static_assert(sizeof(S) == 16);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 145

Polymorphic Types

void (*foo)()

vptr
i
vtable layout & behavior is complicated
struct S {
int i;

virtual void foo();

75
static_assert(sizeof(S) == 16);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 146

bindgen: Polymorphic Types

struct Base {
int i;
virtual void foo();

¥

struct Derived : Base {
int j;
void foo() override;

75

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 147

#[lrepr(C)] . .
P | | bindgen: Polymorphic Types
pub struct Base__bindgen_vtable(c_void);
#[repr(C)]
pub struct Base {
pub vtable_: *const Base__bindgen_vtable,

pub i: c_int,

#[Lrepr(C)]
pub struct Derived {
pub _base: Base,

pub j: c_int,

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 148

#[repr(C)]

pub struct Base__bindgen_vtable(c_void);

bindgen: Polymorphic Types

pub vtable_: *const Base__bindgen_vtable, Base has a vptr

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 149

bindgen: Polymorphic Types

unsafe extern "C" {
#[1link_name = "_ZN4Base3fooEv"]

pub fn Base_foo(this: *mut c_void);

#[1link_name = "_ZN7Derived3fooEv"]

pub fn Derived_foo(this: *mut c_void);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 150

bindgen: Polymorphic Types

unsafe extern "C" {
#[1link_name = "_ZN4Base3fooEv"]
pub fn Base_foo(this: *mut c_void); Pure FFI functions; no methods

#[1link_name = "_ZN7Derived3fooEv"]

pub fn Derived_foo(this: *mut c_void);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 151

bindgen: Polymorphic Types

*mut c_void

*mut c_void Raw void pointers

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 152

bindgen: Polymorphic Types

fn main() {
let mut d = get_derived();
unsafe {

Derived_foo(&mut d as *mut _ as *mut c_void);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 153

bindgen: Polymorphic Types

unsafe {
Derived_foo(&mut d as *mut _ as *mut c_void); Unsafe... and a bit messy "

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 154

bindgen: Polymorphic Types

bindgen only tries to get the layout correct

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 155

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 156

autocxx

Automated bindings + bridged types

bindgen CXX

FFI

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 6.11.2025 157

CXX

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 158

CXX

Bindings for types like std: : stringand std: : vector

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 159

CXX

Special consideration given to ownership

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 160

CXX

Patterns for error handling

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 161

CXX

#[cxx: :bridge]
mod ffi {
unsafe extern "C++" {
include!("foo.hpp");
type Foo;
fn new_foo() -> UniquePtr<Foo>;

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 6.11.2025 162

CXX

include! ("foo.hpp"); Include C/C++ files

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 6.11.2025 163

CXX

15192 |70 Declare types & functions
fn new_foo() -> UniquePtr<Foo>;

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 6.11.2025 164

Move Semantics

fn foo(s: String) {}

fn main() {
let s = "Hello, Meeting C++".to_string();
foo(s); // Move

foo(s); // Error: use of moved value: "s

~

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 165

Move Semantics

let s = "Hello, Meeting C++".to_string();
foo(s); // Move
foo(s); // Error: use of moved value: s Rust has destructive moves

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 166

Move Semantics

fn main() {
let s = "Hello, Meeting C++".to_string();

! No destructor call for s

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 167

Move Semantics

void foo(std::string s) {}

int main() {
auto s = std::string("Hello, Meeting C++");
foo(std: :move(s)); // Move
foo(s); // 0Ok

Y // "s.~s()°

Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 168

Quality Assurance

Move Semantics

auto s = std::string("Hello, Meeting C++");
foo(std: :move(s)); // Move
foo(s); // Ok C++ leaves s in a valid state

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 169

Move Semantics

int main() {

auto s = std::string("Hello, Meeting C++");

} // “s.~S()° Destructor is still run

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 170

cxx: Types

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 171

cxx: Types

Shared

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 172

cxx: Types

Shared Opaque

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 173

cxx: Types

Shared Opaque Extern

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 174

cxx: Types
Shared Opaque Extern
\/isible to both languages
Passed by value

Trivial types

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 175

cxx: Types
Shared Opaque Extern
Visible to one language
Handled behind indirection

Non-trivial types

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 176

cxx: Types
Shared Opaque Extern
Defined outside of cxx

Opaque or Trivial

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 177

cxx: Types

Opaque

Handled behind indirection

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 178

truct S
° '””25() _{ cxx: Opaque C++ Types
7

std: :unique_ptr<S> make();

#[cxx: :bridge]
mod ffi {
unsafe extern "C++" {
include!("foo.hpp");
type S;
fn make() -> UniquePtr<S>;

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 179

cxx: Opaque C++ Types

std: :unique_ptr<S> make();

fn make() -> UniquePtr<sS>; Handled behind an indirection

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 180

cxx: Opaque C++ Types

int foo() const;

fn foo(self: &S); Declare methods as expected, but...

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 181

struct S {

~S();
void bar();

cxx: Opaque C++ Types

¥

#[cxx: :bridge]
mod ffi {
unsafe extern "C++" {
include!("foo.hpp");
type S;
fn bar(self: Pin<&mut S>);

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 182

cxx: Opaque C++ Types

void bar();

fn bar(self: Pin<&mut S>); Non-const methods require Pin

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 183

cxx: Opaque C++ Types

&mut T can be used to swap memory

&mut S

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 184

Quality Assurance

cxx: Opaque C++ Types

&mut T can be used to swap memory

use std::mem::{swap, take, replace};

pub const fn swap<T>(x: &mut T, y: &mut T);

Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025

185

cxx: Types

Extern

Opaque or Trivial

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 186

struct S { .
~5(): cxx: Trivial Extern C++ Types

7

struct S(i32);
unsafe impl ExternType for S {
type Id = cxx::type_id!("S");

type Kind = cxx::kind::Trivial;

3
#[cxx: :bridge]
mod ffi {
unsafe extern "C++" {
include!("foo.hpp");
type S = super::S;
¥
3

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 187

cxx: Trivial Extern C++ Types

struct S(i32); Existing (bindgen or hand-written) bindings

type S = super::S;

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 188

cxx: Trivial Extern C++ Types

Trivial = subject to Rust move semantics*
type Kind = cxx::kind::Trivial;

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 189

cxx: Trivial Extern C++ Types

Trivial = subject to Rust move semantics*
type Kind = cxx::kind::Trivial;

*C++26 introduces std': :is_trivially relocatable (P2786)

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 190

fn foo() -> Result<(), String> {

, cxx: Error Handling
Err("Rust Error".to_string())

#[cxx: :bridge]
mod ffi {
extern "Rust" {
fn foo() -> Result<()>;
¥
unsafe extern "C++" {
fn bar() -> Result<()>;

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 191

cxx: Error Handling

C++ exceptions to Rust Result<T, E>

extern "Rust" {
fn foo() -> Result<()>;
}

unsafe extern "C++" {
fn bar() -> Result<()>;

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 192

cxx: Error Handling

C++ exceptions to Rust Result<T, E>

Converted at the boundary

extern "Rust" {
fn foo() -> Result<()>;
}

unsafe extern "C++" {
fn bar() -> Result<()>;

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 193

cxx: Error Handling

template <typename Try, typename Fail> C++ exceptions to Rust Result<T, E>

static void trycatch(Try &&func, Fail &&fail) noexcept
try {

func(); Custom conversion function
} catch (const std::exception &e) {

fail(e.what());

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 194

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 195

autocxx

bindgen o Glues bindgen and cxx together

FFI

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 6.11.2025 196

include_cpp! {
autocxx

#include "foo.hpp"

safety!(unsafe)

generate!("Foo")

generate!("Bar")

¥

fn main() €
let foo = ffi::Foo::new(10.into());
println!("{}", foo.val);
let mut bar = ffi::Bar::new(20.into())

.within_unique_ptr();

println!("{}", bar.pin_mut().val());

5

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 197

include_cpp! {

autocxx
#include "foo.hpp"
safety!(unsafe) _
generate! ("Foo") Glues bindgen and cxx together

generate!("Bar")

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 198

autocxx

Provides a fluent bridge
fn main() {
let foo = ffi::Foo::new(10.into());
println!("{}", foo.val);

let mut bar = ffi::Bar::new(20.into())

.within_unique_ptr();
println!("{3", bar.pin_mut().val());

Quallt\/ Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 199

autocxx

let foo = ffi::Foo::new(10.into());

Trivial types are simple values
println!("{}", foo.val); YP P

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 200

autocxx

let mut bar = ffi::Bar::new(20.into())
.within_unique_ptr(); Non-trivial types behind an indirection + Pin
println!("{}", bar.pin_mut().val());

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 201

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 202

Summary

Use C as a foundation

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 203

Summary

Static assert type layout

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 204

Summary

Use code generation to overcome differences

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 205

Summary

Handle exceptions at the boundary

Quallt\l Assurance Copyright © 2025 Qt Group and its group companies. All rights reserved. 11/6/2025 206

	Slide 1: Building Bridges
	Slide 2
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: Motivation
	Slide 8: Motivation
	Slide 9: Motivation
	Slide 10: Motivation
	Slide 11
	Slide 12: ABI
	Slide 13: ABI
	Slide 14: ABI
	Slide 15: ABI
	Slide 16: ABI
	Slide 17: ABI
	Slide 18: ABI
	Slide 19: ABI
	Slide 20: ABI
	Slide 21: ABI
	Slide 22: ABI
	Slide 23: ABI
	Slide 24: ABI
	Slide 25: ABI
	Slide 26: ABI
	Slide 27: ABI
	Slide 28: ABI
	Slide 29: ABI
	Slide 30: Platform/C ABI
	Slide 31: Platform/C ABI
	Slide 32: Platform/C ABI
	Slide 33: Platform/C ABI
	Slide 34
	Slide 35: Python/C
	Slide 36: Python/C
	Slide 37: Python/C
	Slide 38: Python/C
	Slide 39: Python/C
	Slide 40: Python/C
	Slide 41: Python/C
	Slide 42: Platform/C ABI
	Slide 43: Platform/C ABI
	Slide 44: Platform/C ABI
	Slide 45
	Slide 46: Platform/C ABI
	Slide 47: Platform/C ABI
	Slide 48: Platform/C ABI
	Slide 49: Platform/C ABI
	Slide 50: Platform/C ABI
	Slide 51: Platform/C ABI
	Slide 52: Platform/C ABI
	Slide 53: Platform/C ABI
	Slide 54: Platform/C ABI
	Slide 55: Platform/C ABI
	Slide 56: Platform/C ABI
	Slide 57: Platform/C ABI
	Slide 58: Platform/C ABI
	Slide 59: Platform/C ABI
	Slide 60: Platform/C ABI
	Slide 61: Platform/C ABI
	Slide 62: Platform/C ABI
	Slide 63: Platform/C ABI
	Slide 64: Platform/C ABI
	Slide 65: Platform/C ABI
	Slide 66: Platform/C ABI
	Slide 67: Platform/C ABI
	Slide 68: Platform/C ABI
	Slide 69: Platform/C ABI
	Slide 70: Platform/C ABI
	Slide 71: Platform/C ABI
	Slide 72: Platform/C ABI
	Slide 73: Platform/C ABI
	Slide 74: Platform/C ABI
	Slide 75
	Slide 76: Platform/C ABI
	Slide 77: Platform/C ABI
	Slide 78: Platform/C ABI
	Slide 79: Platform/C ABI
	Slide 80: Platform/C ABI
	Slide 81: Platform/C ABI
	Slide 82: Platform/C ABI
	Slide 83: Platform/C ABI
	Slide 84: Platform/C ABI
	Slide 85: Platform/C ABI
	Slide 86: Platform/C ABI
	Slide 87: Platform/C ABI
	Slide 88: Platform/C ABI
	Slide 89: Platform/C ABI
	Slide 90: Platform/C ABI
	Slide 91: Platform/C ABI
	Slide 92: Platform/C ABI
	Slide 93: Platform/C ABI
	Slide 94: Platform/C ABI
	Slide 95
	Slide 96: Building Bridges
	Slide 97: Building Bridges
	Slide 98: Building Bridges
	Slide 99: Building Bridges
	Slide 100
	Slide 101
	Slide 102
	Slide 103: Rust/C++
	Slide 104: Rust/C++
	Slide 105: Rust/C++
	Slide 106: Rust/C++
	Slide 107: Rust/C++
	Slide 108: Rust/C++
	Slide 109: Rust/C++
	Slide 110: Rust/C++
	Slide 111: C++ ABI
	Slide 112: C++ ABI
	Slide 113: C++ ABI
	Slide 114: C++ ABI
	Slide 115: C++ ABI
	Slide 116: C++ ABI
	Slide 117: C++ ABI
	Slide 118: C++ ABI
	Slide 119: C++ ABI
	Slide 120: C++ ABI
	Slide 121: C++ ABI
	Slide 122: C++ ABI
	Slide 123: C++ ABI
	Slide 124: C++ ABI
	Slide 125
	Slide 126
	Slide 127: Rust/C++
	Slide 128: Rust/C++
	Slide 129: Rust/C++
	Slide 130: Rust/C++
	Slide 131: Rust/C++
	Slide 132: Rust/C++
	Slide 133: Rust/C++
	Slide 134: Rust/C++
	Slide 135: Rust/C++
	Slide 136: Rust/C++
	Slide 137: Rust/C++
	Slide 138: Rust/C++
	Slide 139: Rust/C++
	Slide 140: Rust/C++
	Slide 141: Rust/C++
	Slide 142: Rust/C++
	Slide 143: C++ ABI
	Slide 144: C++ ABI
	Slide 145: C++ ABI
	Slide 146: C++ ABI
	Slide 147: Rust/C++
	Slide 148: Rust/C++
	Slide 149: Rust/C++
	Slide 150: Rust/C++
	Slide 151: Rust/C++
	Slide 152: Rust/C++
	Slide 153: Rust/C++
	Slide 154: Rust/C++
	Slide 155: Rust/C++
	Slide 156
	Slide 157
	Slide 158: Rust/C++
	Slide 159: Rust/C++
	Slide 160: Rust/C++
	Slide 161: Rust/C++
	Slide 162: Rust/C++
	Slide 163: Rust/C++
	Slide 164: Rust/C++
	Slide 165: Rust/C++
	Slide 166: Rust/C++
	Slide 167: Rust/C++
	Slide 168: Rust/C++
	Slide 169: Rust/C++
	Slide 170: Rust/C++
	Slide 171: Rust/C++
	Slide 172: Rust/C++
	Slide 173: Rust/C++
	Slide 174: Rust/C++
	Slide 175: Rust/C++
	Slide 176: Rust/C++
	Slide 177: Rust/C++
	Slide 178: Rust/C++
	Slide 179: Rust/C++
	Slide 180: Rust/C++
	Slide 181: Rust/C++
	Slide 182: Rust/C++
	Slide 183: Rust/C++
	Slide 184: Rust/C++
	Slide 185: Rust/C++
	Slide 186: Rust/C++
	Slide 187: Rust/C++
	Slide 188: Rust/C++
	Slide 189: Rust/C++
	Slide 190: Rust/C++
	Slide 191: Rust/C++
	Slide 192: Rust/C++
	Slide 193: Rust/C++
	Slide 194: Rust/C++
	Slide 195
	Slide 196
	Slide 197: Rust/C++
	Slide 198: Rust/C++
	Slide 199: Rust/C++
	Slide 200: Rust/C++
	Slide 201: Rust/C++
	Slide 202
	Slide 203: Building Bridges
	Slide 204: Building Bridges
	Slide 205: Building Bridges
	Slide 206: Building Bridges
	Slide 207: Danke schön! Fragen?

