
Parallel Algorithms, Ranges
and oneDPL
Abhilash Majumder

Agenda

1. C++ Parallel Algorithms(P2300, P2500) ,
Senders/Receivers concept

2. Parallel Range algorithms (P3179)
3. oneDPL , Thrust use cases
4. QnA

C++ Parallel Algorithms
(P2300)

ISO C++ Parallelism/Concurrency Programming Language
(based on Gonzalo’s ISC C++ BoF)

C++ 2023

Ranges++ many

Multi-dimensional Spans [Bryce, Christian]
operator[i, j, k]

C++ 2026

Executors/Sender/Receiver [P2300]

Reflection

Algorithms++ asynchrony, ranges [Ruslan, Alexey,
Bryce]

Linear Algebra, submdspan, padded layouts
[Bryce, Christian]

Concurrency++ RCU, HP [MichaelW, Gonzalo,
Maged, Paul M]

SIMD [Matthias, Daniel, Ruslan]

Safety++ Contracts, Automatic Variables, Inf loops

C++ 2017

Parallel Algorithms [many]

Concurrency++
Memory Model++ [MichaelW,
Maged, Paul M]
Forward Progress

C++ 2020

Concepts

Ranges

Modules

Concurrency++ [Bryce, Gonzalo]
Coroutines
atomic_ref, barriers, …

2024

Motivation

Why P2300?

● The need for a flexible abstraction that answers "where" the code should be executed.
● Limitations of current execution policies in specifying hardware execution contexts. (std::future/std::promise)

C++17 parallel algorithms: A good start

Current limitation: No control over execution hardware

P2300 introduces flexible schedulers

Need: Integrate schedulers with parallel algorithms

The Need for Integration

● C++ parallel algorithms offer parallelism, but lack control over execution hardware ("where").
● P2300 introduces the "scheduler" concept, representing execution contexts, addressing the "where."
● The integration of these two is crucial for leveraging hardware capabilities effectively.

Sender Receiver Example

Example Usage Example
- Initiate a Scheduler
- Call execution::schedule returning a

sender which completes the
scheduler.

- Use sender algorithms for async
work, execution::then is a sender
adapter which sends the results of the
sender invocation

- Submit the async pipeline
(thread::sync_wait) for completion

Sender Factory APIs

Schedule & Just API

Execution::sender auto
schedule(
 execution::scheduler
auto scheduler);

execution::sender auto
just(
 auto …&& values);

Usage Example
execution::scheduler auto sch1 =

get_system_thread_pool().scheduler();

/* sender describing start of task graph */;

execution::sender auto snd1 =

execution::schedule(sch1);

/* either moved or decay copied to receiver

*/;

execution::sender auto snd1 =

execution::just(1.0f)

Sender Factory APIs

transfer_just, just_error and just_stopped API

execution::sender auto
transfer_just(
 execution::scheduler auto
scheduler,

auto …&values);

execution::sender auto just_error(
 auto && error);

Execution::sender auto
just_stopped();

Usage Example
execution::sender auto vals =

execution::transfer_just(get_system_threadpoo

l.scheduler(), 1,2,3);

/* similar to just*/;

execution::sender auto send =

execution::then(vals, [](auto …args){

Std::print(args…)});

Sender Adapter APIs

Then, upon_*, let_* API

Execution::sender auto then(
 execution::sender auto input,
std::invocable<…> function);

execution::sender upon_error(
 execution::sender auto
input,std::invocable<…>
function);

Execution::sender
let_value(execution::sender auto
input,std::invocable<…>
function);

Usage Example
execution::scheduler auto sch1 =

execution::then(input, [](auto…

args){std::print(args);});

/* then returns the sender describing the

task graph described by the input sender with

added invocable. */

/*upon_error & upon_stopped are similar to

then but work with errors and stop signals*/

/*let_value/error/stopped are similar to then

but return the sender and performs callback –

similar to “future_unwrapping” in

std::future*/;

Sender Adapter APIs

Then, upon_*, let_* API

Execution::sender auto then(
 execution::sender auto input,
std::invocable<…> function);

execution::sender upon_error(
 execution::sender auto
input,std::invocable<…>
function);

Execution::sender
let_value(execution::sender auto
input,std::invocable<…>
function);

Usage Example
execution::scheduler auto sch1 =

execution::then(input, [](auto…

args){std::print(args);});

/* then returns the sender describing the

task graph described by the input sender with

added invocable. */

/*upon_error & upon_stopped are similar to

then but work with errors and stop signals*/

/*let_value/error/stopped are similar to then

but return the sender and performs callback –

similar to “future_unwrapping” in

std::future*/;

Sender Adapter APIs

on, into_variant, bulk and split API

execution::sender auto on(
 execution::scheduler auto sched,
execution::sender auto snd);

execution::sender auto into_variant(
 execution::sender auto snd);

Execution::sender auto bulk
(execution::sender auto
input,std::integral auto size,
std::invocable<decltype(size),…>
function);

Execution::sender auto
split(execution::sender auto sender);

Usage Example
/* on will start the provided sender on an

execution agent belonging to a context by

scheduler. */

/*into_variant sends a variant of tuples of

all the possible sets of types sent by the

input sender*/

/*bulk returns a sender describing the task

of invoking the provided function with every

index in the provided shape along with the

values sent by the input sender.*/;

/*split returns a sender if the provided

sender is a multishot sender*/

Sender Adapter APIs

other API (transfer_when_all, when_all,
ensure_started, stopped_as_*)

execution::sender auto
transfer_when_all(
 execution::scheduler auto sched,
execution::sender auto …inputs);

Execution::sender auto
when_all(execution::sender auto
…inputs);

Execution::sender auto
ensure_started(execution::sender
auto sender);

Usage Example
/* similar to when_all but returns a sender

whose completed value is provided scheduleron

will start the provided sender on an

execution agent belonging to a context by

scheduler. */

/*when_all returns a sender that completes

once all of the input senders have completed.

It is constrained to only accept senders that

can complete with a single set of values

(_i.e._, it only calls one overload of

set_value on its receiver)..*/;

/*ensure_started implies that provided

sender has connected through

execution::connect and start is called on Op

state*/

Sender Consumers APIs

start_detached,this_thread::sync_wait

void
start_detached(){execution::
sender auto sender;}

auto
sync_wait(execution::sender
auto sender) ->
std::optional<std::typle<val
ues-sent-by(sender)>>

Usage Example
/* Like ensure_started, but does not return a

value; if the provided sender sends an error

instead of a value, std::terminate is

called.*/

/*this_thread::sync_wait is a sender consumer

that submits the work described by the

provided sender for execution, similarly to

ensure_started, except that it blocks the

current std::thread or thread of main until

the work is completed, and returns an

optional tuple of values that were sent by

the provided sender on its completion of

work.*/

Main features of Senders Receivers P2300

Senders & Receivers

● Senders represent work composable through sender algorithms, can be forked or joined.
● Senders can be multishot or single shot
● Sender factory and adapter models are lazy and they support cancellation of scheduled tasks (stopped)
● Many senders can be trivially made awaitable and all awaitables are senders.
● Receivers are glue between senders
● Execution::connect is customization point which serves as connection between senders and receivers.
● Lazy senders provide optimization by fusing multiple ops /functions that can be submitted via an execution context.
● Customization of transfer with Schedulers: The transfer function in C++ does not allow direct customization by the target

scheduler because specialized schedulers (like CUDA or remote node schedulers) may require specific runtime calls for
transitioning between execution contexts, especially for accelerators. To address this, these specialized schedulers can inject a
sender to handle transitions to a regular CPU execution context.

● Introducing schedule_from Adaptor: To enable full customization of transitions by both the source and target schedulers, the
proposal introduces a schedule_from adaptor, which takes a scheduler and a sender as arguments. This adaptor allows both
schedulers to customize the transition, ensuring proper execution in specialized contexts like GPUs. The default implementation
of transfer(snd, sched) is equivalent to schedule_from(sched, snd).

Sender Consumers Example

Pipe in a CUDA execution context (except: when_all*,
on)

auto snd =
execution::schedule(thread_pool.schedu
ler()) | execution::then([]{
return 123; }) |
execution::transfer(cuda::new_stream_s
cheduler() | execution::then([](int
i){ return 123 * 5; }) |
execution::transfer(thread_pool.schedu
ler()) |
execution::then([](int i){ return i -
5; });

auto [result] =
this_thread::sync_wait(snd).value();

Usage Example

Piping enables us to compose together
senders with a linear syntax. Without it, we
would have to use either nested function call
syntax, which would cause a syntactic
inversion of the direction of control flow, or
have to introduce a temporary variable for
each stage of the pipeline. Consider the
following example where we want to execute
first on a CPU thread pool, then on a CUDA
GPU, then back on the CPU thread pool

C++ Parallel Algorithms
(P2500)

P2500R2 C++ parallel algorithms and P2300

Overview:

● The evolution of parallelism in C++.
● Why P2300 is important for C++26.

Goal of the Talk:

● Discuss the integration of C++ parallel algorithms with the
facilities introduced in P2300.

● https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p25
00r2.htm

//C++ 11/14

namespace stde = std::execution;

std::vector<int> vec{N};

// https://wg21.link/P3179: parallel range algorithms

std::ranges::generate(vec, std::minstd_rand{});

std::ranges::sort(stde::par, vec);

// https://wg21.link/P2500: support schedulers to specify where to execute, targeted to cover
synchronous parallel algorithms integration with P2300.
std::ranges::generate(stde::execute_on(some_sched, stde::seq), vec, std::minstd_rand{});

std::ranges::sort(stde::execute_on(some_sched, stde::par), vec);

Further evolution of parallel algorithms (P2500)

Design Overview
The Proposed Solution in P2500

● The paper proposes extending C++ algorithms to accept a "policy-aware scheduler."
● This scheduler combines an execution policy ("how") and a scheduler ("where").
● The execute_on function facilitates the creation of such policy-aware schedulers.

Design Goals:

● Extending C++ parallel algorithms with policy-aware schedulers.
● Allowing customization for different execution contexts.

● Preserve core semantics of algorithms and policies
● Cover both "classic" and range-based algorithms

● Minimal API changes: The design aims to preserve the existing usage patterns of C++ algorithms.
● Flexibility: It allows execution semantics to be adjusted based on the capabilities of the execution context.
● Customization: Implementers of execution contexts can customize the implementation of standard algorithms for optimal performance.

Key Features:

● Combining scheduler and policy.
● Minimal, incremental API changes.

Combining Scheduler with Policy

Why Use Schedulers?

● Schedulers represent execution contexts and provide flexibility.
● API overview

Key Concepts

1. policy_aware_scheduler
2. execute_on
3. Customizable functions

● The execution_policy concept defines the requirements for execution policies.
● The policy_aware_scheduler concept represents an entity combining a scheduler and an execution policy.
● The execute_on customization point binds a scheduler and an execution policy.
● Parallel algorithms are defined as customizable functions, allowing customization for specific policy-aware schedulers.

policy_aware_scheduler Concept

API

template <typename S>
concept policy_aware_scheduler =
scheduler<S> && requires (S s) {
 typename
S::base_scheduler_type;
 typename S::policy_type;
 { s.get_policy() } ->
execution_policy;

};

Usage Example
struct MyScheduler { using

base_scheduler_type = /* some scheduler type

*/;

 using policy_type = /* some execution

policy type */;

 policy_type get_policy() const {

 return /* return the associated

policy */;

 }};

static_assert(policy_aware_scheduler<MySch

eduler>);

execute_on Function API and Usage example

inline namespace

__execute_on_fn_namespace

{

 inline constexpr

__detail::__execute_on_fn

execute_on;

}

auto

policy_aware_sched =

std::execute_on(my_sc

heduler,

std::execution::par);

 Proposed API (Example with for_each)

// Existing API

template<class ExecutionPolicy, class It, class Fun>
constexpr void for_each(ExecutionPolicy&& policy, It first, It last, Fun f);

// New Policy-based API

template<execution_policy Policy, input_iterator I, sentinel_for<I> S, class Proj = identity,

 indirectly_unary_invocable<projected<I, Proj>> Fun>

constexpr ranges::for_each_result<I, Fun>

ranges::for_each(Policy&& policy, I first, S last, Fun f, Proj proj = {});

// New Scheduler-based API

template<policy_aware_scheduler Scheduler, input_iterator I, sentinel_for<I> S,

 class Proj = identity, indirectly_unary_invocable<projected<I, Proj>> Fun>

constexpr ranges::for_each_result<I, Fun>

ranges::for_each(Scheduler sched, I first, S last, Fun f, Proj proj = {}) /*customizable*/;

Allowing schedulers with C++ algorithms.
Blocking behavior similar to C++17 parallel algorithms.
template<policy_aware_scheduler Scheduler,
typename ForwardIterator, typename Function>
void for_each(Scheduler&& sched, ForwardIterator
first, ForwardIterator last, Function f) {
 // Implementation using scheduler and policy
 sched.execute([&]() {
 for (; first != last; ++first) {
 f(*first);
 }
 });

}

Using the API

sstd::for_each(

std::execute_on(my_gpu_scheduler,
std::execution::par),
 begin(data),
 end(data),
 [](auto& item) {
item.process(); }

);

Customization and Extensibility
Parallel Algorithms as Customizable Functions:

● Customization through policy-aware schedulers.
● Flexibility to support platform-specific optimizations.

Example Customization:

● Using CUDA-specific scheduler for std::for_each.

namespace cuda {
 struct scheduler {
 friend constexpr auto
 tag_invoke(std::tag_t<ranges::for_each>, scheduler,
/*...*/) {
 // CUDA-optimized implementation
 cuda_kernel<<<blocks, threads>>>(/*...*/);
 return std::ranges::for_each_result{/*...*/};
 }
 };

}

}

Covering Classic and Range Algorithms

Support for Both Types:

● Customizable algorithms defined in std::ranges.
● Parallel and range-based algorithms integration with schedulers

Possible Implementations:

● Default and customized implementations using tag_invoke.
● Extending existing function objects with new constrained overloads.

Example Implementation:

● Code snippets demonstrating the implementation for std::ranges::for_each.

.

proposed API can be implemented with customization points

namespace ranges {
 struct __for_each_fn {
template<policy_aware_scheduler Scheduler, input_iterator I, sentinel_for<I> S,
 class Proj = identity, indirectly_unary_invocable<projected<I, Proj>>
Fun>
constexpr for_each_result<I, Fun>
operator()(Scheduler sched, I first, S last, Fun f, Proj proj = {}) const {

if constexpr (std::tag_invocable<__for_each_fn, Scheduler, I, S, Fun, Proj>) {

 std::tag_invoke(*this, sched, first, last, f, proj);

} else {

 // default implementation

}

 }

 };
}

Benefits

Unified API for different execution contexts

Optimized implementations per platform

Extensible to future scheduling needs

Covers both iterator and range-based algorithms

Open Questions

Exact customization mechanism

● tag_invoke vs language support

Impact on execution rules
Set of basic parallel functions

Next Steps

● Finalize customization approach
● Specify behavior for all parallel algorithms
● Explore "parallel backend" functions
● Gather community feedback

● Explore specifying a set of basic functions as a "parallel backend."
● Further customization for different execution policies and schedulers.

Summary

P2300 offers significant flexibility and control over execution contexts.

P2500 Integration with parallel algorithms is crucial for modern C++ development.

The future of C++ parallelism lies in customizable and extensible algorithms.

Parallel Range Algorithms
(P3179)

Design Overview

Key Modifications:

● The parallel range algorithms should be close to C++17 classic ones to use the code with minimal required changes.

● The parallel range algorithms should return the same type as the corresponding serial range algorithms.

● The proposed algorithms should be special non-ADL discoverable functions, same as serial range algorithms.

● The required range and iterator categories should at least be random access for all but std::execution::seq execution policies.

● The proposed API should require any callable object passed to an algorithm to have const-qualified operator().

● The proposed API is not a customization point.

● The proposed API is not constexpr.

Switch from Parallel Range Algorithms Example

// Before

std::for_each(std::execut
ion::par, v.begin(),
v.end(), [](auto& x) {
++x; });

// After

//Using Iterator and Sentinel

std::ranges::for_each(std::execution

::par, v.begin(), v.end(), [](auto&

x) { ++x; });

//Or use a Range directly

std::ranges::for_each(std::execution

::par, v, [](auto& x) { ++x; });

More expressive & unified calls

// Before

reverse(policy, begin(data),
end(data));
transform(policy, begin(data),
end(data), begin(result), [](auto i){
return i * i; });
auto res = any_of(policy,
begin(result), end(result), pred);

// After

//With Ranges API

auto res = any_of(policy, data |

views::reverse |

views::transform([](auto i){ return

i * i; }), pred);

Bringing parallelism to std::ranges algorithms (P3179)

// C++03
template<class RandomAccessIterator, class Compare>
 void sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp);

// C++17
template<class ExecutionPolicy, class RandomAccessIterator, class Compare>
 void sort(ExecutionPolicy&& exec, RandomAccessIterator first, RandomAccessIterator last, Compare comp);

// C++20
template<random_access_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
 constexpr borrowed_iterator_t<R> ranges::sort(R&& r, Comp comp = {}, Proj proj = {});

// C++26? (https://wg21.link/P3179)
template<class ExecutionPolicy, random_access_range R, class Comp = ranges::less, class Proj = identity>
requires sortable<iterator_t<R>, Comp, Proj>
 constexpr borrowed_iterator_t<R> ranges::sort(ExecutionPolicy&& exec, R&& r, Comp comp = {}, Proj proj = {});

C++ Parallel Range Algorithms: Unifying Parallelism and
Ranges
Why Combine Parallelism with Ranges?

● Ranges offer a productive API with opportunities for optimization.
● Users are already using ranges with non-range parallel algorithms; integrating execution policies simplifies and streamlines

code.

The Power of Ranges and Parallelism

● The C++ Ranges library provides a powerful way to express and compose computations lazily.
● C++17 introduced parallel algorithms, but they don't integrate seamlessly with ranges.
● This paper proposes adding parallel algorithms that work directly with ranges, combining the benefits of both worlds.

The Need for Parallel Range Algorithms

● Users often combine ranges and parallel algorithms, but the current approach is verbose and error-prone.
● The proposed parallel range algorithms offer a more natural and expressive way to parallelize range-based computations

.

Design Overview

Key Modifications:

● Execution policy parameter added to range algorithms.
● Introduction of bounded ranges for better parallel performance.

● Execution policies: Parallel range algorithms accept execution policies to control parallelism.
● Random access ranges: Algorithms require random-access ranges for efficient parallelization.
● Bounded ranges: At least one input and the output range must be bounded for safety and performance.
● Algorithm return types: Consistent with serial range algorithms for easy migration.

● Enable single-call fusion of multiple operations
● Preserve the expressiveness of ranges

Key Design Decisions

1. Return types match serial range
algorithms

2. Require random_access_range (for
now)

3. Take range as output
4. Require bounded ranges
5. Preserve callable requirements

from C++17 parallel algorithms

template <class ExecutionPolicy,
random_access_range R,
 class Proj = identity,

indirectly_unary_invocable<projected<i
terator_t<R>, Proj>> Fun>

requires

sized_sentinel_for<ranges::sentinel_t<

R>, ranges::iterator_t<R>>

ranges::borrowed_iterator_t<R>

ranges::for_each(ExecutionPolicy&&

policy, R&& r, Fun f, Proj proj = {});

Differences to C++17 Parallel Algorithms

Key Differences:

● Parallel range algorithms require random access ranges.
● Output can now be a range instead of just an iterator.

Fusion Example

// Before (multiple parallel
algorithm calls)
reverse(policy, begin(data),
end(data));
transform(policy, begin(data),
end(data), begin(result),
 [](auto i){ return i
* i; });

auto res = any_of(policy,

begin(result), end(result),

pred);

// After (fusing operations with

parallel range algorithms)

auto res = ranges::any_of(policy,

 data | views::reverse

 |

views::transform([](auto i){ return

i * i; }),

 pred);

Benefits

Parallel range algorithms offer a natural and efficient way to parallelize range-based
computations.

The proposed design integrates seamlessly with the Ranges library and existing parallel
algorithms.

This feature will enhance the expressiveness and performance of parallel code in C++.

More expressive code

Potential for better performance

Safer APIs (bounded ranges, range outputs)

Simplified migration from serial to parallel code

oneDPL, Thrust use cases

Thrust

Thrust is the C++ parallel algorithms library which inspired the introduction of
parallel algorithms to the C++ Standard Library.

The Thrust library is built on top of CUDA, OpenMP, TBB and provides many
general purpose parallel algorithms for standard C++ library.

Thrust can be used to perform parallel operations such as reduce, excusive_scan,
for_each, gather etc. Has both host and device execution policies.

Thrust can choose different backends for GPUs and CPUs (through TBB) to
perform parallelization.

Host or Device Execution Policy Example

// Template impl
Template<typename
DerivedPolicy>
struct host_execution_policy :
public
thrust::system::_THRUST_HOST_S
YSTEM_NAMESPACE::execution_pol
icy<DerivedPolicy>

Template<typename
DerivedPolicy>
struct device_execution_policy
: public
thrust::system::_THRUST_HOST_S
YSTEM_NAMESPACE::execution_pol
icy<DerivedPolicy>

// Calling host_policy for parallel

range algorithms)

Struct mypolicy :

thrust::host_execution_policy<mypoli

cy>();

// Calling host_policy for

transform

Thrust::transform(mypolicy, data,

data+1, data,

thrust::identity<int>());

oneDPL (ParallelSTL)

oneAPI DPC++ Library (oneDPL) works with the Intel oneAPI DPC++/C++
Compiler to provide high-productivity APIs to developers, which can minimize
SYCL* programming efforts across devices for high performance parallel
applications.

oneDPL provides parallel api, api mapping for SYCL kernels, and macros;
provides different device specific implementation for parallel algorithms on SYCL
runtime. (vectorized algorithms, segmented scan etc)

oneDPL is involved in device execution policies and follows std::execution (seq,
unseq, par, par_unseq, dpcpp_default, dpcpp_fpga)

oneDPL Execution Policy Example

// C++ std exec policies

std::fill(oneapi::dpl::execution::
par_unseq, data.begin(),
data.end(), 42);

//SYCL device policies

//Calling device_policy for SYCL

gpus (Intel)

auto policy_b = device_policy<class

PolicyB> {device{gpu_selector_v}};

std::for_each(policy_b, ...);

// Calling dpcpp_default

auto policy_b = device_policy<class

PolicyB> {dpcpp_default};

std::for_each(policy_b, ...);

oneDPL Ranges Example

using namespace oneapi::dpl::experimental::ranges;

{

 sycl::buffer<int> A(data, sycl::range<1>(max_n));

 sycl::buffer<int> B(data2, sycl::range<1>(max_n));

 auto view = all_view(A) | views::reverse();

 auto range_res = all_view<int, sycl::access::mode::write>(B);

 copy(oneapi::dpl::execution::dpcpp_default, view, range_res);

}

Challenges and Questions

Challenges and Open Questions

Thread safety of views

Support for forward ranges

Customization points

Interaction with schedulers (P2300)

Next Steps

Finalize API design

Address thread safety concerns

Explore integration with P2300 (schedulers)

Implement and benchmark

Parallel Algorithms, Ranges
and oneDPL
Abhilash Majumder

Resources

1. P2300. P2500
2. Parallel Range algorithms (P3179)
3. oneDPL , Thrust use cases

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2300r5.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2500r0.html
https://wg21.link/P3179R0
https://oneapi-src.github.io/oneDPL
https://nvidia.github.io/cccl/thrust/api/

