
HOW TO DEBUG
LINUX
MULTI-THREADED
CODE
GREG LAW

Free UDB
($7,900) 

Expectations

Reality

Time between bug and failure

What makes bugs hard to find?

N
on

-d
et

er
m

in
is

tic

‘Heisenbugs’

WHAT IS A RACE CONDITION?

Concurrent threads of execution acting on a shared resource such
that the ordering of operations affects the outputs of the program. 

WHAT IS A RACE CONDITION?

Concurrent threads of execution 

WHAT IS A RACE CONDITION?

Concurrent threads of execution acting on a shared resource 

WHAT IS A RACE CONDITION?

Concurrent threads of execution acting on a shared resource such
that the ordering of operations affects the outputs of the program. 

A

B

KNOW HOW TO USE THE TOOLS

Thread Sanitizer (tsan) 

Valgrind / Helgrind / DRD 

GDB 

Lightweight logging 

Time-travel: thread fuzzing / chaos mode 

AN EXAMPLE RACE

#include <thread>

int
main(void)
{
 int ret = 42;

 {
 std::jthread t0([&ret]() {ret = 1;});
 std::jthread t1([&ret]() {ret = 0;});
 }

 return ret;
}

ThreadSanitizer

Use ThreadSanitizer to catch the race in simple_race.cpp 

 

Compile and run: 

g++ -g -fsanitize=thread simple_race.cpp -lpthread

./a.out 

sysctl vm.mmap_rnd_bits=30 

HELGRIND

 

valgrind --tool=helgrind ./a.out

 

DRD

Use DRD to catch the race in simple_race.cpp 

 

valgrind --tool=drd ./a.out

 

MUTEXES ARE NOT ALWAYS THE ANSWER

 #include <thread>

+#include <mutex>

 int main(void)

 {

 int ret = 42;

+ std::mutex m;

 {

- std::jthread t0([&ret]() {ret = 1;});

- std::jthread t1([&ret]() {ret = 0;});

+ std::jthread t0([&ret, &m]() {m.lock(); ret = 1; m.unlock();});

+ std::jthread t1([&ret, &m]() {m.lock(); ret = 0; m.unlock();});

 }

Bugs 

“DATA RACES” ARE JUST ONE KIND OF RACE

- Race with another process or the OS more common. 
- Race with the filesystem, signals, process exit, etc. 
- Time-of-check to time-of-use (TOCTOU, TOCTTOU or TOC/TOU) 

Non-deterministic bugs Non-deterministic bugs 

Race Conditions 

Data
Races 

Is it even a race?? 

GDB: MUCH MALIGNED BUT ACTUALLY GOOD!

OH: GDB isn’t good at debugging threads. 

OH: When I compile with debuginfo the races go away. 

SLEEPING BY SYNCHRONIZATION

 #include <thread>

+#include <unistd.h>

 int main(void)

 {

 int ret = 42;

 {

 std::jthread t0([&ret]() {ret = 1;});

- std::jthread t1([&ret]() {ret = 0;});

+ std::jthread t1([&ret]() {usleep(10000); ret = 0;};

 }

L3

Sometimes, logging is all we got 

We can do better than printf though 

THREAD FUZZING

VISIT UNDO.IO TO LEARN MORE

Free UDB
($7,900) 

