
What is a random number
and why should I care?

Frances Buontempo

@fbuontempo 1

A random number

int GetRandom()
{

return 59;
//A perfectly randomly
// picked number

}
http://stackoverflow.com/questions/4195958/how-do-i-scale-down-
numbers-from-rand

@fbuontempo 2

http://stackoverflow.com/questions/4195958/how-do-i-scale-down-numbers-from-rand

What is random?

• A single number is not random, a sequence of numbers might be
(Knuth)

• They still have properties
• Mean (expectations)

• Variance

• Chaotic != random

• Pseudo-random numbers

@fbuontempo 3

It is impossible to prove definitively
whether a given sequence of numbers is

random.

@fbuontempo 4

"Anyone who attempts to generate random
numbers by deterministic means is, of course,

living in a state of sin."
John von Neumann

@fbuontempo 5

Why should you care?

• People get it wrong

• We need randomness for
• Games

• Simulations, e.g. Covid-19 modeling

• …

• How to test
• Code using random numbers

• Random number generators

@fbuontempo 6

https://www.nature.com/articles/s41421-020-0148-0
infectious disease dynamics SEIR (Susceptible, Exposed, Infectious, and Removed) model

https://www.nature.com/articles/s41421-020-0148-0

Code your way out of a paper bag!

@fbuontempo 7

Award!

@fbuontempo 8

@fbuontempo 9

@fbuontempo 10

How do you generate random outcomes?

• C’s rand

• Python’s random.random()

• C#’s Random.Next(1, 7)

• C#’s System.Security.Cryptography.RandomNumberGenerator

• rlang runif(1), rnorm(4)

@fbuontempo 11

Always ask two questions

1.Default seed?
2.Range (), [) or []?

@fbuontempo 12

Under the hood

From https://www.thestar.com/opinion/star-columnists/2021/10/25/this-is-nuts-after-squirrels-hid-hundreds-of-
walnuts-under-the-hood-of-my-car-i-went-in-search-for-answers.html

@fbuontempo 13

https://www.thestar.com/opinion/star-columnists/2021/10/25/this-is-nuts-after-squirrels-hid-hundreds-of-walnuts-under-the-hood-of-my-car-i-went-in-search-for-answers.html

Generating random numbers

• Linear congruential generator (1958 by W. E. Thomson and A.
Rotenber)

• 𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝑐 𝑚𝑜𝑑 𝑀

• If c is zero, it’s a multiplicative linear congruential generator (MLCG)
or multiplicative congruential generator (MCG).

• Or a Lehmer RNG (1951)

• 𝑥𝑖+1 = 𝐴𝑥𝑖𝑚𝑜𝑑 𝑀

• With e.g. M = 231 − 1 = 2,147,483,647 (a Mersenne prime) and A is 75 = 16,807

@fbuontempo 14

Cycle or Collapse

• xi+1 = A xi mod M

• Up to M-1 if M is prime and we choose a suitable A
• A=7 and M=11: 1, 7, 5, 2, 3, 10, 4, 6, 9, 8, 1, …

• A=5 and M=11: 1, 5, 3, 4, 9, 1, …

• Why prime (or coprime)?
• A=4 and M=12 starting with 1: 1, 4, 4, 4, …

• 4*1mod 12 = 4, then 4*4 mod 12 = 16 mod 12 = 4, …

• A=24 and M=12 starting with 1: 1, 0, 0, 0, …
• 24*1 mod 12 = 0, …

@fbuontempo 15

Mersenne Twister

• 𝑥𝑘+𝑛 = 𝑥𝑘+𝑚 ⊕ 𝑥𝑘
𝑢|𝑥𝑘+1

𝑙 𝐴 𝑘 = 0, 1, …

• | concatenation of bit vectors
• ⊕ bitwise exclusive or
• A is the “twist transformation”

• 𝑥𝐴 =
𝑥 ≫ 1, 𝑙𝑜𝑤𝑒𝑠𝑡 𝑏𝑖𝑡 𝑜𝑓 𝑥, 𝑥0 = 0

𝑥 ≫ 1 ⊕ 𝑎, 𝑥0 = 1

• Several seeds, to make bits for x= 𝑥𝑤−1, 𝑥𝑤−2, … , 𝑥0,

• Matsumoto and Nishimura ACM Transactions on Modeling and
Computer Simulation Vol 8 Issue 1 Jan. 1998 pp 3–30

• https://dl.acm.org/doi/10.1145/272991.272995

@fbuontempo 16

https://dl.acm.org/doi/10.1145/272991.272995

Other engines are available

• Subtract with carry
• AKA lagged Fibonacci: new term is “some combination” of any 2 previous

terms

• Engine adaptors: generate pseudo-random numbers using another
random number engine as entropy source.

• discard_block_engine
• discards some output of a random number engine

• independent_bits_engine
• packs the output of a random number engine into blocks of a specified number of bits

• shuffle_order_engine
• delivers the output of a random number engine in a different order

@fbuontempo 17

Is random a W.I.P?

• minstd_rand0
• std::linear_congruential_engine<std::uint_fast32_t, 16807, 0, 2147483647>
• Discovered in 1969 by Lewis, Goodman and Miller, adopted as "Minimal standard" in

1988 by Park and Miller

• minstd::rand
• std::linear_congruential_engine<std::uint_fast32_t, 48271, 0, 2147483647>
• Newer "Minimum standard", recommended by Park, Miller, and Stockmeyer in 1993

• Proposal P1932
• The XorShift and Philox class generators are good candidates.

https://wg21.link/P1932

• Python’s numpy default_rng
• Now using PCG64 = permuted congruential generator, from 2014

https://numpy.org/doc/stable/reference/random/index.html#random-quick-start

@fbuontempo 18

https://wg21.link/P1932
https://numpy.org/doc/stable/reference/random/index.html#random-quick-start

P1932

Each of the C++11 random number generators has own advantages and
disadvantages in terms of described criteria,

e.g. linear congruential generators, the simplest generators with 32-bit
state, have a quite short generation period (2^32) and weak statistical

properties

while Mersenne Twister 19937 generator has long generation period
and strong statistical properties relying a big vector state underneath;

in its turn, this state impacts on the effective support of parallel Monte
Carlo simulations.

C++ random number generators do not support additional use cases
such as quasi Monte Carlo simulations.

@fbuontempo 19

(An aside) 𝑥2 − 1
1 0 0.25 0.5
0 -1 -0.9375 -0.75

-1 0 -0.12109 -0.4375
0 -1 -0.98534 -0.80859

-1 0 -0.02911 -0.34618

0 -1 -0.99915 -0.88016
-1 0 -0.00169 -0.22531
0 -1 -1 -0.94923

-1 0 -5.7E-06 -0.09896

0 -1 -1 -0.99021
-1 0 -6.6E-11 -0.01949

0 -1 -1 -0.99962
-1 0 0 -0.00076
0 -1 -1 -1

-1 0 0 -1.2E-06
0 -1 -1 -1

-1 0 0 -2.7E-12
0 -1 -1 -1

-1 0 0 0
@fbuontempo 20

𝑧𝑛+1 = 𝑧𝑛
2 − 𝑐

• Start with z=0, and pick a complex number c.

• Cycle, collapse (black), or continue growing (colour)…

@fbuontempo 21

Mandelbrot set

Created by Wolfgang Beyer with the program Ultra Fractal 3. - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=321973

@fbuontempo 22

https://commons.wikimedia.org/w/index.php?curid=321973

Or 2𝑥2 − 1?
1 0 0.5 0.25
1 -1 -0.5 -0.875
1 1 -0.5 0.53125
1 1 -0.5 -0.43555

1 1 -0.5 -0.6206
1 1 -0.5 -0.22972

1 1 -0.5 -0.89446
1 1 -0.5 0.600119

1 1 -0.5 -0.27971
1 1 -0.5 -0.84352
1 1 -0.5 0.423054

1 1 -0.5 -0.64205
1 1 -0.5 -0.17554

1 1 -0.5 -0.93837
1 1 -0.5 0.761082

1 1 -0.5 0.158491
1 1 -0.5 -0.94976
1 1 -0.5 0.804093

1 1 -0.5 0.293132

@fbuontempo 23

Using random number generators

• Time to think

• Possible problems

• Common use cases

• Testing….

@fbuontempo 24

Seeds

• The number the recurrence relationship starts with xi

• What should you use?
• Current time?

• Known number?

• Same seed, different languages… (or same lang different os, etc)

@fbuontempo 25

Threads

• Might not be thread safe… global state
• “It is implementation-defined whether rand() is thread-safe.”

• https://en.cppreference.com/w/cpp/numeric/random/rand

• Two threads… different results depending on order
• Not just in C

• Don’t use C’s rand
• https://learn.microsoft.com/en-us/events/goingnative-2013/rand-

considered-harmful

@fbuontempo 26

https://en.cppreference.com/w/cpp/numeric/random/rand
https://learn.microsoft.com/en-us/events/goingnative-2013/rand-considered-harmful

Roll a die in Python

import random

random.randint(1,6)#alias for randrange(1, 6+1)

Always ask two questions

1. Default seed?
2. Range (), [) or []?

@fbuontempo 27

Never use %

• In C….

srand(time(null));

• https://c-faq.com/lib/randrange.html

rand() % N /* POOR */

rand returns RAND_MAX+1 distinct values, which cannot always be
evenly divvied up into N buckets

M + rand() / (RAND_MAX / (N - M + 1) + 1)

gives numbers in the range [M, N]

@fbuontempo 28

https://c-faq.com/lib/randrange.html

Roll a die in C++

#include <iostream>

#include <random>

int main()

{

std::default_random_engine generator; // probably a mt19937

std::uniform_int_distribution<int> distribution(1, 6);

const int count = 3;

for (int i = 0; i < count; ++i)

{

std::cout << distribution(generator) << '\n';

}

}

@fbuontempo 29

using default_random_engine = mt19937;

using mt19937 = mersenne_twister_engine<unsigned int, 32, 624, 397, 31,
0x9908b0df, 11, 0xffffffff, 7, 0x9d2c5680, 15, 0xefc60000, 18, 1812433253>;

class mersenne_twister_engine : public mersenne_twister<_Ty, _Wx, _Nx,
_Mx, _Rx, _Px, _Ux, _Sx, _Bx, _Tx, _Cx, _Lx>;

class mersenne_twister : public _Circ_buf<_Ty, _Nx> {
static constexpr _Ty default_seed = 5489U;
mersenne_twister() : _Dxval(_WMSK) {

seed(default_seed, static_cast<_Ty>(1812433253));
}

}

@fbuontempo 30

Two questions

#include <iostream>

#include <random>

int main()

{

std::random_device rd;

std::default_random_engine generator{rd()};

std::uniform_int_distribution distribution(1, 6); // don’t need <int>

const int count = 3;

for (int i = 0; i < count; ++i)

{

std::cout << distribution(generator) << '\n';

}

}

@fbuontempo 31

Could use time… but

#include <chrono>

std::default_random_engine generator{

static_cast<unsigned int>(

std::chrono::steady_clock::now().

time_since_epoch().count())

};

@fbuontempo 32

A warning discussion about seeds

The current standard library does not provide any convenient way to use a std::random_device to
properly (in the sense that each initial state is equally likely) seed a random engine.

The naïve approach that most people seem to use is the following.

template <typename EngineT> //
requires(RandomNumberEngine(EngineT))

void seed_non_deterministically_1st(EngineT& engine)

{

std::random_device rnddev {};

engine.seed(rnddev());

}

This code is severely flawed. If EngineT is std::mt19937, it has a state size of 19968 bits. However, if
an unsigned int is 32 bits (as is the common case on many platforms today), then of the up to 219968

states, at most 232 (that is one 2-19936-th) can possibly be chosen!
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0205r0.html

@fbuontempo 33

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0205r0.html

More weirdness

• The Mersenne Twister uses 624 32-bit integers to represent its
internal state, plus a few more for housekeeping, so using one 32 bit
value (e.g. from random device) seems odd.

• “Strangely enough, when you initialize the Mersenne Twister with a
32-bit seed (via seed_seq), it can't ever generate 7, or 13 as its first
output. And two different seeds produce 0. Even more crazy, there
are twelve different 32-bit seeds that can produce the "random"
numbers 1226181350 and 1563636090, so those numbers show up
twelve times more often than we'd expect.”

https://www.pcg-random.org/posts/cpp-seeding-surprises.html

@fbuontempo 34

https://www.pcg-random.org/posts/cpp-seeding-surprises.html

Oh really?

std::seed_seq seeder{ 1080100664 };

std::mt19937 rng(seeder);

std::cout << rng() << '\n';

versus

std::mt19937 rng(1080100664);

std::cout << rng() << '\n';

@fbuontempo 35

Warm up?

auto RandomlySeededMersenneTwister () {

std::mt19937 rng(std::random_device{}());

rng.discard(700000);

return rng;

}

https://codereview.stackexchange.com/questions/109260/seed-stdmt19937-from-stdrandom-device

700000 from "Improved long-period generators based on linear
recurrences modulo 2", F. Panneton, P. L'Ecuyer, M. Matsumoto in ACM
TOMS Volume 32 Issue 1, March 2006 Pages 1-16

@fbuontempo 36

https://codereview.stackexchange.com/questions/109260/seed-stdmt19937-from-stdrandom-device

But

“seed_seq initialization used by std::mt19937 performs a warm up”
https://www.learncpp.com/cpp-tutorial/generating-random-numbers-using-mersenne-twister/

mersenne_twister_engine() : _Mybase(default_seed, _Dx, _Fx) {}

explicit mersenne_twister_engine(result_type _Xx0) :

_Mybase(_Xx0, _Dx, _Fx) {}

template <class _Seed_seq, _Enable_if_seed_seq_t<_Seed_seq,
mersenne_twister_engine> = 0>

explicit mersenne_twister_engine(_Seed_seq& _Seq) :
_Mybase(default_seed, _Dx, _Fx) {

seed(_Seq);

}

@fbuontempo 37

https://www.learncpp.com/cpp-tutorial/generating-random-numbers-using-mersenne-twister/

My head hurts!

• First, C++ standard randoms are not portable ("seed-stable")
• But see https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2059r0.pdf

• 2nd this is good enough:

std::random_device rd;

std::mt19937 rng{ rd() };

• 3rd this might be slightly better:

std::random_device rd;

std::seed_seq seeder{ rd() };

std::mt19937 rng(seeder);

@fbuontempo 38

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2059r0.pdf

Roll two dice

Can they share the same generator?

rng1 = random.Random()

rng2 = random.Random()

rng1.randint(1,6)

rng2.randint(1,6)

@fbuontempo 39

Roll two dice in C++

std::random_device rd;

std::default_random_engine generator1{ rd() };

std::default_random_engine generator2{ rd() };

//Using time instead of rd would be bad!

std::uniform_int_distribution distribution(1, 6);

const int count = 3;

for (int i = 0; i < count; ++i)

{

std::cout << distribution(generator1) << '\n';

std::cout << distribution(generator2) << '\n';

}

@fbuontempo 40

Pick a card

import random

random.randint(1,52)

Always ask two questions

1. Default seed?
2. Range (), [) or []?

@fbuontempo 41

Shuffle the cards first!

import random

L = [1, 2, 3, 4, 5]

random.shuffle(L)

[5, 3, 2, 4, 1]

@fbuontempo 42

Note that even for small len(x), the total number of permutations of x can quickly
grow larger than the period of most random number generators. This implies that

most permutations of a long sequence can never be generated. For example, a
sequence of length 2080 is the largest that can fit within the period of the

Mersenne Twister random number generator.

How to shuffle 3 cards

for (int i = 0; i < cards.Length; i++)

{

int n = rand.Next(cards.Length);

Swap(ref cards[i], ref cards[n]);

}

https://blog.codinghorror.com/the-danger-of-naivete/

• 1 of 3 outcomes after first loop
• 1 of those goes to another of 3
• Finally last goes to another of 3 => 33 = 27 possible outcomes
• Should just be 6: 123, 132, 213, 231, 312, 321

@fbuontempo 43

https://blog.codinghorror.com/the-danger-of-naivete/

A better way…

Knuth-Fisher-Yates shuffle algorithm

for (int i = cards.Length - 1; i > 0; i--)

{

int n = rand.Next(i + 1);

Swap(ref cards[i], ref cards[n]);

}

@fbuontempo 44

C++ shuffle kerfuffles

• Lives in the algorithm header

• std::random_shuffle
• Might use swap(first[i], first[std::rand() % (i+1)]);

• std::shuffle (a deck of cards, maybe)

std::random_device rd;

std::mt19937 gen{ rd() };

std::shuffle(deck.begin(), deck.end(), gen);

//or

std::ranges::shuffle(deck, gen);

@fbuontempo 45

Choices

• Choices v sample in python
things = ['red', 'red', 'red', 'red', 'blue', 'blue']

random.sample(things, k=3)

random.choices(things, k=3)

• With or without replacement?
• Sample: Return a k length list of unique elements chosen from the

population without replacement.

• Choice: Return a k length list of elements chosen from the population with
replacement.

@fbuontempo 46

Samples in C++

#include <algorithm>

#include <string>

#include <vector>

void sampling()

{

using namespace std::string_literals;

std::vector things = {"red"s, "red"s, "red"s, "red"s, "blue"s, "blue"s };

std::random_device rd;

std::default_random_engine gen{ rd() };

std::ranges::shuffle(things, gen);

std::vector result(things.begin(), things.begin() + 3); // Get the first 3 values

for (auto thing: result)

std::cout << thing << '\n';

}

@fbuontempo 47

But…

• If we want to sample 3 integers out of 1 billion needs a vector with a
billion values (memory-inefficient) and then we’d have to shuffle all
of them (runtime-inefficient)

https://www.gormanalysis.com/blog/random-numbers-in-cpp/

• Suggests an unordered_set and select by index

• But things have repeats
• {"red"s, "red"s, "red"s, "red"s, "blue"s, "blue"s };

@fbuontempo 48

https://www.gormanalysis.com/blog/random-numbers-in-cpp/

Actually

using namespace std::string_literals;

auto things = { "red"s, "red"s, "red"s, "red"s, "blue"s, "blue"s };

std::vector<std::string> result;

std::sample(things.begin(), things.end(),

std::back_inserter(result), 3,

std::mt19937{ std::random_device{}() }); // C++17

// or

std::ranges::sample(things,

std::back_inserter(result), 3,

std::mt19937{ std::random_device{}() }); // C++20

for (auto thing : result)

std::cout << thing << '\n';

@fbuontempo 49

R, S

• Knuth’s algorithms
• R reservoir sampling, sample without replacement, of k items from a

population of unknown size n in a single pass over the items.

• S randomly sampling n items from a set of M items, with equal probability,
where M >= n and M, the number of items is unknown until the end.

@fbuontempo 50

Choices in C++

void choices()

{

using namespace std::string_literals;

std::vector things = { "red"s, "red"s, "red"s, "red"s, "blue"s, "blue"s };

std::vector<double> weights(things.size(), 1.0/things.size());

std::discrete_distribution<int> distribution(weights.begin(), weights.end());

std::random_device rd;

std::default_random_engine gen{ rd() };

std::vector<std::string> result(3);

std::generate(result.begin(), result.end(), [&]{ return things[distribution(gen)]; });

for (auto thing : result)

std::cout << thing << '\n';

}

@fbuontempo 51

How to test

• A dice game?

• Picking a card?

• Shuffling a card?

@fbuontempo 52

YOU DO NOT NEED TO TEST
YOUR LANGUAGE’S RANDOM

NUMBER GENERATOR

@fbuontempo 53

BUT DO CHECK YOU ARE
USING THE RANDOM
NUMBER GENERATOR

CORRECTLY

@fbuontempo 54

Testing

• Known seed v mock

• Send in 0? (Makes much of maths/simulation study easy)

@fbuontempo 55

Seeds

• A seed will give you a known sequence (on a compiler, platform, etc)

• Will it cover all the transitions?

• Fake out the random
• Try return zero

• Have changes (win/lose) in a separate function to random

• What are you trying to test?

@fbuontempo 56

It's not as simple as using a predictable sequence to test it,
because even simple changes to the code may use up the

sequence in a different order and break tons of tests (which isn't
helpful, because all that stuff didn't break).

I know I don't want to go change 50 tests because I reordered
two lines.

My suggestion is that somewhere, your code should
be doing something with the numbers.

You can test whether or not it does the right things with the
right numbers

http://wiki.c2.com/?UnitTestingRandomness

@fbuontempo 57

http://wiki.c2.com/?UnitTestingRandomness

Testing, testing

• https://stackoverflow.com/questions/61047296/how-to-replace-the-
call-to-random-randint-in-a-function-tested-with-pytest

import random

...

def hit(self, enemy, attack):

dmg = random.randint(self.weapon.damage_min,

self.weapon.damage_max) +

self.strength // 4

…

@fbuontempo 58

https://stackoverflow.com/questions/61047296/how-to-replace-the-call-to-random-randint-in-a-function-tested-with-pytest

Suggested approach

def test_player_hit_missed(monkeypatch,

monster,

hero):

monkeypatch.setattr('random.randint',

lambda a, b: -3)

hero.hit(monster, 'Scream')

assert monster.life == 55

@fbuontempo 59

What do you think?

• Send in values? (and hit does the hit)

@fbuontempo 60

Testing, … what?

• https://stackoverflow.com/questions/42788644/how-to-test-random-choice-in-python

from random import shuffle

def getMaxIndices(lst):

'''

Return indices of max value. If max value appears more than once,

we chose one of its indices randomly.

'''

index_lst = [(i, j) for i, j in enumerate(lst)]

shuffle(index_lst)

index_lst.sort(key=lambda x: x[1])

max_index = index_lst.pop()[0]

return max_index

@fbuontempo 61

https://stackoverflow.com/questions/42788644/how-to-test-random-choice-in-python

Suggested approach

@patch('random.shuffle', lambda x: x)

def test_get_max_Indices():

max_index = getMaxIndices([4,5,6,7,8])

assert max_index == 4

@fbuontempo 62

Alternatives?

• Deterministic tests - verify code
• Send in values? (and hit does the hit)
• Never forget edge cases

• Random sequences have properties
• What average do you expect?
• Is your uniform distribution giving uniform results?

• Non-deterministic test - find bugs
• Property based testing
• Fuzzing

• Also, have you ever run your unit/integration/etc test in random order
• Random is useful

@fbuontempo 63

Beyond uniform discrete

• Dice, cards,…
• whole numbers (discrete)

• Equally likely (uniform)

• Continuous (doubles etc)
• https://www.thusspakeak.com/ak/2014/06/01-

WhatAreTheChancesOfThat.html

• Non-uniform
• Normal

• Weighted

• Distributions of angles and directional statistics

@fbuontempo 64

https://www.thusspakeak.com/ak/2014/06/01-WhatAreTheChancesOfThat.html

Uniform Distribution x ~ U(a, b)

• x is drawn from the uniform distribution with range [a, b]

• Roll a die 120 times,
• how many of each number?

• 1: 20,

• 2:21,

• 3:23,

• 4:18,

• 5:14,

• 6:24

@fbuontempo 65

Normal Distribution X ~N(3.5, 1)

• The Bell curve or Gaussian distribution

• Bucket continuous numbers

• 1: 4,

• 2: 14,

• 3: 42,

• 4: 46,

• 5: 11,

• 6: 3

@fbuontempo 66

Gaussian pdf

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒
−
1
2

𝑥−𝜇
𝜎

2

𝜇 mean

𝜎 standard deviation

@fbuontempo 67

By Inductiveload - self-made, Mathematica, Inkscape, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3817954

https://commons.wikimedia.org/w/index.php?curid=3817954

Race!

• Two distributions and the steppers
• Stepper, y+= 20.0f; green blob

• Uniform, on a float [0, 40]; cyan blob

• Normal, N~(20.0f, 10.0f); magenta blob

• Who will win?

@fbuontempo 68

@fbuontempo 69

@fbuontempo 70

Formal tests for randomness

• Does the sequence have a recognisable pattern?

• Can you get all the numbers in the range?...

• Diehard, dieharder

@fbuontempo 71

From IMDB
https://www.imdb.com/title/tt0095016/

https://www.imdb.com/title/tt0095016/

Spectral characteristics

• Looking for repetitive patterns that are near each other

• Plotting x(n) against x(n-1)
https://en.wikipedia.org/wiki/Spectral_test

@fbuontempo 72

https://en.wikipedia.org/wiki/Spectral_test

https://www.random.org/analysis/

@fbuontempo 73

https://www.random.org/analysis/

Pseudo v secure

From https://stackoverflow.com/questions/2706500/how-
do-i-generate-a-random-integer-in-c

@fbuontempo 74

https://stackoverflow.com/questions/2706500/how-do-i-generate-a-random-integer-in-c

Entropy

• The number of possible microscopic arrangements or states of
individual atoms and molecules of a system that comply with the
macroscopic condition of the system. (Ludwig Boltzmann)

• The average level of "information", "surprise", or "uncertainty"
inherent to the variable's possible outcomes. (Claude Shannon)

@fbuontempo 75

Information Entropy

𝐻 𝑋 = −

𝑥∈𝑋

𝑝 𝑥 𝑙𝑜𝑔𝑝(𝑥)

• Fair coin, two outcomes, p(head)=p(tail)=0.5
• H(X) = − 1 2 log 1 2 + 1 2 log 1 2 = − 1 2 × −1 + 1 2 × −1 = 1

• Unfair coin, two outcomes, p(head)=0, p(tail)=1
• H(X) = − 0 × log 0 + 1 × log 1 = − 0 + 1 2 × 0 = 0

0: No surprise

1: Total surprise

@fbuontempo 76

Entropy

“I've seen winzip used as a tool to measure the
randomness of a file of values before (obviously, the

smaller it can compress the file the less random it is).”
http://wiki.c2.com/?UnitTestingRandomness

@fbuontempo 77

http://wiki.c2.com/?UnitTestingRandomness

Cryptography

• NIST “provides guidelines and recommendations for generating random
numbers for cryptographic use”

• https://csrc.nist.gov/projects/random-bit-generation

• Also goes wrong
• E.g. SSL, Key generation, RSA public key factoring

https://en.wikipedia.org/wiki/Random_number_generator_attack

• “the elliptic curve digital signature algorithm – ECDSA – demands that the
random number used to sign a private key is only ever used once. If the
random number generator is used twice, the private key is recoverable.”

https://www.theregister.com/2013/08/12/android_bug_batters_bitcoin_wallets/

• The Java class SecureRandom (used by the vulnerable wallets) can generate collisions
for the value r. (See http://armoredbarista.blogspot.com/2013/03/randomly-failed-
weaknesses-in-java.html)

@fbuontempo 78

https://csrc.nist.gov/projects/random-bit-generation
https://en.wikipedia.org/wiki/Random_number_generator_attack
https://www.theregister.com/2013/08/12/android_bug_batters_bitcoin_wallets/
http://armoredbarista.blogspot.com/2013/03/randomly-failed-weaknesses-in-java.html

Integrated balanced homodyne detector

• 100-Gbit/s Integrated Quantum Random Number Generator Based on
Vacuum Fluctuations

• “Quantum random number generation allows for the creation of truly
unpredictable numbers due to the inherent randomness available in
quantum mechanics.”

https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.4.010330

@fbuontempo 79

https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.4.010330

@fbuontempo 80

What have we learnt?

• There’s no such thing as a random number

• C++ gives us choices

• Things change, so keep learning

• Seemingly arbitrary outcomes make for good games
• And some useful stuff too

• And fun

• Time for one more demo?

@fbuontempo 81

Jumpers

std::poisson_distribution<> distribution(0.03125); // 1 in 32

int jump = distribution(generator);

y += 20 + jump * 40.;

• 3 distributions and the steppers
• Stepper, y+= 20.0f; green blob
• Uniform, on a float [0, 40]; cyan blob
• Normal, N~(20.0f, 10.0f); magenta blob
• Jumper, Poisson, lambda 1/32; blue blob

>Race\Debug\SFMLRace.exe j

@fbuontempo 82

From https://en.wikipedia.org/wiki/Poisson_distribution

https://en.wikipedia.org/wiki/Poisson_distribution

@fbuontempo 83

@fbuontempo 84

@fbuontempo 85

C++ Book

35% discount code (good for all products in all formats): au35buon

https://www.manning.com/books/c-plus-plus-bookcamp

@fbuontempo 86

https://www.manning.com/books/c-plus-plus-bookcamp

