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Outline of the talk:

• Intro to Mulithreading
• When and When not to use it?
• Factors affecting the performance of 

multithreaded code
• Dive in False Sharing 
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Multithreading 

- Imagine you're running a busy restaurant kitchen, and you have to prepare 
different dishes simultaneously to serve customers quickly.

- You, as the chef, are like a computer's CPU, and the different dishes are 
tasks or processes that your computer needs to handle. 

- Multithreading is like having multiple chefs (threads) in the kitchen, each 
working on a separate task at the same time.

The Busy 
Kitchen



Question

→                    What happen if your restaurant does not have enough worker?



→                        Customers running out of a restaurant due to slow service!
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So what is Multithreading, formally?

It’s the ability of the operating system and software application to take 
advantage of the additional CPU cores available in the system, by splitting up 
the workload in several independent parts and performing calculations 
separately on each core.
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→ Alright, but the good thing about the previous problem is, it is trivial to 
parallelize!

→ Which means, we can divide the array into two halves and calculate the 
sum for each halves separately on different cores and then merge the 
result. 



Quick benchmark for the 
summing the total number 
of elements in the vector

Benchmark summing the 
vector elements in single 
thread and multithread
→ BM_SingleThreadSum 

measuring the 
performance of 
summing numbers in a 
single-threaded fashion.

→ BM_MultiThreadSum 
measuring the 
performance of 
summing numbers 
using two threads.

https://quick-bench.com/q/eVfGmFaDsDxh3ATRzGWOqLVx_z4
https://quick-bench.com/q/eVfGmFaDsDxh3ATRzGWOqLVx_z4
https://quick-bench.com/q/eVfGmFaDsDxh3ATRzGWOqLVx_z4


Multithreading
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Generic way to use multithreading for performance 
improvement
→ Divide the workload, based on the number of available hardware threads(N), 

partition the tasks into N smaller and independent sections.
→ Launch N software threads, with each handling specific task.
→ Synchronize completion, wait for all of the thread to finish their task.
→ If needed, combine the different computations to get the final result.



And yes it isn’t simple as it seems!
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Concerns to care about

→ Spawning number of threads is not cheap, it’s resource intensive task. 
Therefore, multithreading is more suitable for tasks that are sufficiently 
large to offset this overhead.

→ Imbalance in handing the workload, so sometimes one or more threads may 
take longer to complete tasks and delaying the overall result time. So what 
is the solution for this?

→ A probable solution for this, that split the workload into more pieces than 
there are threads. So as soon as threads complete it’s task, it can fetch 
other tasks to execute from the queue.

→ Synchronization, when there are shared resources.
→ Complexity in dividing the workloads dynamically during the computation 

process.
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Use Cases of Multithreading

1. Web Servers
2. Database systems
3. Gaming
4. Scientific Computing
5. Financial trading



Advantages of Multithreading

→ Enhanced performance
→ Improve GUI responsiveness
→ Simultaneous and parallelized occurrence of tasks
→ Better use of cache storage by utilization of resources
→ Better use of CPU resource



Disadvantages of Multithreading

→ Complex debugging and testing processes
→ Overhead switching of context
→ Increased potential for deadlock occurrence
→ Increased difficulty level in writing a program
→ Unpredictable results
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When to use Multithreading?

→ 2. Improved Performance - Task and Data Parallelism:
          Task Parallelism: Divide a single task into sub-tasks and execute them 
in parallel. 
          Data Parallelism: Each thread performs the same operation on 
different parts of the data.
→ Example:

→ Data Parallelism: Processing elements of an array in parallel.
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→ std::execution::par is one of the execution policy from C++17.
→ It implies parallel execution for the standard library algorithms. And that 

means all the execution of different processes will happen in parallel 
“Safely”. 
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When not to use Multithreading?

→ 1. Complexity vs. Benefit:  
               Concurrency adds complexity to code, making it harder to understand and 
maintain.
              If the expected performance gain isn't worth this increased complexity, it's 
better to avoid concurrency. 
   2. Performance Overhead: Starting a thread has its inherent overhead. If tasks 
complete quickly, the overhead of launching the thread might outweigh the benefits.
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When not to use Multithreading?

 3. Limited Resources:  Threads consume system resources. Too many 
threads can slow down the system, exhaust memory, and even lead to 
resource contention.
4. Potential for More Bugs: Multithreaded code can lead to race conditions, 
deadlocks, and other tricky bugs that might not appear in single-threaded 
applications.



                                      Factors Affecting Multithreaded Performance



                                        Wait, Let's have a look at something basic.



                                                                          

Caches



→                                                                  But why?
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Caches

→ Synchronization mechanisms, such as those involved in locking, are closely 
tied to cache coherence and the consistency of memory.

→ Many optimization techniques manipulate cache coherence protocols to 
enhance performance.

→ For instance, a locking mechanism may initially perform a read operation on 
a lock before attempting to change it atomically.

→ This initial read operation does not provoke cache invalidations across other 
cores, which helps to conserve latency and on-chip bandwidth.



Storage Level Characteristics

Taken from: John Hennessy and David Patterson, Computer 
Architecture: A
Quantitative Approach, Morgan-Kaufmann, 2007. (4th Edition)
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Caches

→ When the CPU retrieves a requested memory value that is already stored in the 
cache, it can access it rapidly. This occurrence is known as a cache hit.

→ When the CPU requests a value that is not present in the cache, it necessitates 
retrieving the data from outside the processor chip. This event is referred to as 
a cache miss.

→ Even though the overall capacity of a cache can range from several kilobytes 
to megabytes, the data is not transferred all at once but rather in smaller 
segments known as cache lines. Commonly, the size of a single cache line is 
around 64 bytes.
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Generating Cache hits

→                                          Two Assumptions to be true
→ Temporal Locality: When a program accesses a memory location, it is likely to 

access that same location again in the near future.
→ Spatial Locality: This concept predicts that if a particular storage location is 

accessed, locations whose addresses are close by are likely to be accessed soon.

     And if these assumptions are not true then you will generate a lot of cache 
misses and re- loading the caches a lot. 
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How bad is Cache miss?

→ In C, C++, 2D arrays get stored in 
memory by row at a time, 
means A[i][j].

→ For large arrays, would it be better 
to add the elements by row, or by 
column? Which will avoid the most 
cache misses?
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How bad is Cache miss?

→ So basically design your data structure so it can take benefit of sequential 
memory order to avoid cache misses

   Sequential memory order -> Array[i][j]
   Jump-around-in-memory order-> Array[j][i]
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How different cores keep track of the cache line 
modifications?
→ We need some sort of organisations around cores so each aware of the 

modifications of the cache line.
→ Something called MESI came here in this scenario.
      1. Modified
      2. Exclusive
      3. Shared
      4. Invalid



A Simplified View of 
How MESI Works

→ Imagine we have two cores A and B.
1. Core A fetches data into its cache. This data is 

now exclusively in Core A's cache, and the cache 
line status is marked as "Exclusive."

2. Subsequently, Core B accesses data from the 
identical memory region. This data is loaded into 
Core B's cache. Consequently, both cache lines 
(in Core A and Core B) transition to a "Shared" 
state to reflect that they hold identical data. 

3. If Core B then modifies this shared data, its cache 
line status updates to "Modified." Concurrently, 
Core A's cache line that contains this data 
becomes "Invalid" to prevent outdated data 
usage. 

4. When Core A needs to read the same data it 
originally fetched, it finds the data in its cache is 
invalidated due to Core B's modification. Core B 
must write its modified data back to the main 
memory, and Core A must reload the updated 
data from the main memory. Post this update, 
both cache lines are again in a "Shared" state, 
indicating they have the latest data from memory.

Step Cache 
Line A

Cache 
Line B

1 Exclusive

2 Shared Shared

3 Invalid Modified

4 Shared Shared



→ The last thing you just see, is "false sharing", It's called false because the 
cores aren't actually needing to share this data; they just happen to be 
located close enough in memory to end up on the same cache line and 
which have a huge performance hit.

→ Thread A  Cache Line                                                       Thread B Cache Line



→ To be noted that false sharing does not create incorrect result but impact 
performance. (So it means that it prevents you from the incorrect results)



→                                   Factors affecting Multithreadead Performance 



Factors affecting the performance of Multithreaded 
code

→ Number of Processors: The performance of multithreaded applications 
can significantly differ based on whether the hardware has a single 
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utilize the hardware without leaving processing power unused. 
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→ Number of Processors: The performance of multithreaded applications can significantly differ 

based on whether the hardware has a single multicore processor or multiple processors with fewer 
cores. A program must spawn a number of threads that align with the available cores to fully utilize 
the hardware without leaving processing power unused. 

      Example: A server with 8 cores can optimally run 8 threads simultaneously. If your application 
creates 16 threads, it may not gain any additional performance benefit due to context switching 
overhead and could actually perform worse due to thread management overhead.
And you may want to use std::thread::hardware_concurrency in such cases to correctly identify the 
number of available concurrent threads, something like 
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→ But using std::thread::hardware_concurrency() requires caution as it 
simply returns the number of hardware threads available on the system. It 
doesn't consider other running threads or applications, potentially leading to 
thread oversubscription and performance degradation. 

→ std::async() avoids the issue of oversubscription by being aware of all 
asynchronous calls within the application. It can schedule tasks more 
effectively without creating more threads than the system can handle 
efficiently.
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Factors affecting the performance of Multithreaded 
code

→ False Sharing: This occurs when threads on different processors modify 
variables that, while independent, are located on the same cache line. This 
can cause unnecessary invalidation and synchronization of caches, leading 
to performance degradation. 

   Consider this example in C: 
      



False Sharing

→ The functions thread1 and thread2 sum the values in the arrays they get 
as arguments to the variables sum1 and sum2. Since sum1 and sum2 are 
defined next to each other, the compiler is likely to allocate them next to 
each other in memory, in the same cache line. 

      



False Sharing

→ First, thread1 reads sum1 into its cache. Since the line is not present in 
any other cache thread1 gets it in exclusive state: 

      

Step Thread1 Thread2
1 Exclusive



False Sharing

→ thread2 now reads sum2. Since thread1 already had the cache line in 
exclusive state, this causes a downgrade of the line in thread1's cache and 
the line is now in shared state in both caches: 

      
Step Thread1 Thread2
1 Exclusive
2 Shared Shared



False Sharing

→ thread1 now writes its updated sum to sum1. Since it only has the line in 
shared state, it must upgrade the line and invalidate the line in thread2's 
cache:

      
Step Thread1 Thread2
1 Exclusive
2 Shared Shared
3 Modified Invalid



False Sharing

→ thread2 now writes its updated sum to sum2. Since thread1 has invalidate 
the cache line in it's cache it gets a coherence miss, and must invalidate the 
line in thread1's cache forcing thread1 to do a coherence write-back: 

      
Step Thread1 Thread2
1 Exclusive
2 Shared Shared
3 Modified Invalid
4 Invalid Modified



False Sharing

→ The next iteration of the loops now starts, and thread1 again reads sum1. 
Since thread2 just invalidated the cache line in thread1's cache, it gets a 
coherence miss. It must also downgrade the line in thread2's cache, forcing 
thread2 to do a coherence write-back: 

      Step Thread1 Thread2
1 Exclusive
2 Shared Shared
3 Modified Invalid
4 Invalid Modified
5 Shared Shared



False Sharing

→ thread2 finally reads sum2. Since it has the cache line in shared state, it can 
read it without and coherence activity, and we are back in the same 
situation as after step 2: 

      
Step Thread1 Thread2
1 Exclusive
2 Shared Shared
3 Modified Invalid
4 Invalid Modified
5 Shared Shared
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False Sharing

→                                                             To be noted
→ Memory accesses may not interleave as described in earlier scenarios.

→ The same updates, coherence misses, and coherence write-backs would occur 
despite different interleaving.

→ In simple examples, the compiler might allocate sum1 and sum2 to registers, avoiding 
memory access and false sharing issues.

→ For more complex programs, the compiler may not be able to keep sum1 and sum2 in 
registers, leading to potential false sharing.
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False Sharing

→ To fix a false sharing problem we need to make sure that the data accessed 
by the different threads is allocated to different cache lines. 

→ So we can update our sum1 and sum2 variable like this in C++ .
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→ It is typically provide the minimum offset between two objects to avoid 
false sharing.



False Sharing

→ Or you can use standard way to align using 
std::harware_destructive_interference_size

→ It's value is typically 64 bytes (which is constant)
→ Example: 
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Causes of False Sharing

→ Per-Thread Data Arrays: Allocating an array where each element is used 
by a different thread, such as per-thread counters, can lead to false sharing 
due to proximity in memory.

     Example: A typical programming pattern, for example consider this example
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Causes of False Sharing

→ Matrix Parallelization 
Patterns: Another common cause of false 
sharing is parallelizations of algorithms 
that work on matrices or multi-dimensional 
arrays.

→ Fine-grained division of matrices for multi-
threading can lead to threads working on 
adjacent elements within the same cache 
line, increasing the chance of false sharing.

→ For example, assume the elements marked 
in green and blue in this example are 
written by two different threads: 



Causes of False Sharing

→ A more coarse grained division of the matrix between the threads will allow 
the threads to work on different cache lines to a greater degree, avoiding 
false sharing: 



Causes of False Sharing

→ Struct Field Accesses: Accesses to different fields in a structure from 
different threads.

  Example: 
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Causes of False Sharing

→ Dynamic Memory Allocation and False Sharing: When a program 
dynamically allocates memory, particularly for small objects, it risks placing data 
used by concurrent threads within the same cache line. 

→ One strategy to mitigate this is to allocate larger memory blocks for a thread's 
exclusive use. Instead of allocating each small object separately, which might 
scatter them across the same cache lines, allocating a single, larger array can 
localize a thread's data, reducing the chances of cache line collision.

→ And else, if it is possible, you can align the data objects causing false sharing. 
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→ Many algorithms in standard library have there parallel versions.
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Multithreading enabled standard library

→ Many algorithms in standard library have there parallel versions.
→ Including std::sort, std::find, std::replace, std:;count_if, 

std::for_each, etc.
→ To use them you will call it in the same way, except for a new parameter 

execution_policy.
→ For example, parallel sorting can be enabled something like this
   std::sort(std::execution::par, v.begin(), v.end()); 



Final Summary

→ Multithreading is indeed not easy.
→ Spawning thread is not cheap, and so synchronization.
→ The best synchronization is no synchronization. – Not my words
→ Use standard library that are trivial to parallelize for example 

std::transform, std::reduce. 
→ Use tools like C2C Linux Perf to detect false sharing.
→ Believe in compiler. 



 🥳 The Party Scenario:
→                                              Thanks for listening! Any Questions?
→                                              Keep in touch on twitter @phyBrackets. 
→                                              Disclaimer: It’s much about science. 
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