
Optimizing
Mulithreading
Performance
Unveiling False Sharing and Harnessing
Hardware Destructive Interference

Shivam Kunwar (shivam.kunwar@kdab.com)

→ I work at KDAB as a Software Engineer.
→ Contributing to LLVM Compiler Infrastructure
→ Google Summer of Code Student
→ Student
→ Fascinated about particle physics and Cosmology

Outline of the talk:

• Intro to Mulithreading
• When and When not to use it?
• Factors affecting the performance of

multithreaded code
• Dive in False Sharing

Multithreading

→ Let's have a fun analogy

Multithreading

- Imagine you're running a busy restaurant kitchen, and you have to prepare
different dishes simultaneously to serve customers quickly.

The Busy
Kitchen

Multithreading

- Imagine you're running a busy restaurant kitchen, and you have to prepare
different dishes simultaneously to serve customers quickly.

- You, as the chef, are like a computer's CPU, and the different dishes are
tasks or processes that your computer needs to handle.

The Busy
Kitchen

Multithreading

- Imagine you're running a busy restaurant kitchen, and you have to prepare
different dishes simultaneously to serve customers quickly.

- You, as the chef, are like a computer's CPU, and the different dishes are
tasks or processes that your computer needs to handle.

- Multithreading is like having multiple chefs (threads) in the kitchen, each
working on a separate task at the same time.

The Busy
Kitchen

Question

→ What happen if your restaurant does not have enough worker?

→ Customers running out of a restaurant due to slow service!

So what is Multithreading, formally?

So what is Multithreading, formally?

It’s the ability of the operating system and software application to take
advantage of the additional CPU cores available in the system, by splitting up
the workload in several independent parts and performing calculations
separately on each core.

Example

→ Let’s consider you have to calculate the sum of an array which have 10
million elements.

Example

→ Let’s consider you have to calculate the sum of an array which have 10
million elements.

→ So you would write a program something like this

Example

→ Let’s consider you have to calculate the sum of an array which have 10
million elements.

→ So you would write a program something like this

→ Alright, but the good thing about the previous problem is, it is trivial to
parallelize!

→ Alright, but the good thing about the previous problem is, it is trivial to
parallelize!

→ Which means, we can divide the array into two halves and calculate the
sum for each halves separately on different cores and then merge the
result.

→ Alright, but the good thing about the previous problem is, it is trivial to
parallelize!

→ Which means, we can divide the array into two halves and calculate the
sum for each halves separately on different cores and then merge the
result.

Quick benchmark for the
summing the total number
of elements in the vector

Benchmark summing the
vector elements in single
thread and multithread
→ BM_SingleThreadSum

measuring the
performance of
summing numbers in a
single-threaded fashion.

→ BM_MultiThreadSum
measuring the
performance of
summing numbers
using two threads.

https://quick-bench.com/q/eVfGmFaDsDxh3ATRzGWOqLVx_z4
https://quick-bench.com/q/eVfGmFaDsDxh3ATRzGWOqLVx_z4
https://quick-bench.com/q/eVfGmFaDsDxh3ATRzGWOqLVx_z4

Multithreading

→ Single Core: Core 1

→ Dual Core: Core 1
 Core 2

Quad Core: Core 1
 Core 2
 Core 3
 Core 4

Process 1 Process 2 Process 3 Process 4

Process 1 Process 2
Process 3 Process 4

Process
1
Process 2
Process 3
Process 4

Generic way to use multithreading for performance
improvement

Generic way to use multithreading for performance
improvement
→ Divide the workload, based on the number of available hardware threads(N),

partition the tasks into N smaller and independent sections.

Generic way to use multithreading for performance
improvement
→ Divide the workload, based on the number of available hardware threads(N),

partition the tasks into N smaller and independent sections.
→ Launch N software threads, with each handling specific task.

Generic way to use multithreading for performance
improvement
→ Divide the workload, based on the number of available hardware threads(N),

partition the tasks into N smaller and independent sections.
→ Launch N software threads, with each handling specific task.
→ Synchronize completion, wait for all of the thread to finish their task.

Generic way to use multithreading for performance
improvement
→ Divide the workload, based on the number of available hardware threads(N),

partition the tasks into N smaller and independent sections.
→ Launch N software threads, with each handling specific task.
→ Synchronize completion, wait for all of the thread to finish their task.
→ If needed, combine the different computations to get the final result.

And yes it isn’t simple as it seems!

Concerns to care about

→ Spawning number of threads is not cheap, it’s resource intensive task.
Therefore, multithreading is more suitable for tasks that are sufficiently
large to offset this overhead.

Concerns to care about

→ Spawning number of threads is not cheap, it’s resource intensive task.
Therefore, multithreading is more suitable for tasks that are sufficiently
large to offset this overhead.

→ Imbalance in handing the workload, so sometimes one or more threads may
take longer to complete tasks and delaying the overall result time. So what
is the solution for this?

Concerns to care about

→ Spawning number of threads is not cheap, it’s resource intensive task.
Therefore, multithreading is more suitable for tasks that are sufficiently
large to offset this overhead.

→ Imbalance in handing the workload, so sometimes one or more threads may
take longer to complete tasks and delaying the overall result time. So what
is the solution for this?

→ A probable solution for this, that split the workload into more pieces than
there are threads. So as soon as threads complete it’s task, it can fetch
other tasks to execute from the queue.

Concerns to care about

→ Spawning number of threads is not cheap, it’s resource intensive task.
Therefore, multithreading is more suitable for tasks that are sufficiently
large to offset this overhead.

→ Imbalance in handing the workload, so sometimes one or more threads may
take longer to complete tasks and delaying the overall result time. So what
is the solution for this?

→ A probable solution for this, that split the workload into more pieces than
there are threads. So as soon as threads complete it’s task, it can fetch
other tasks to execute from the queue.

→ Synchronization, when there are shared resources.

Concerns to care about

→ Spawning number of threads is not cheap, it’s resource intensive task.
Therefore, multithreading is more suitable for tasks that are sufficiently
large to offset this overhead.

→ Imbalance in handing the workload, so sometimes one or more threads may
take longer to complete tasks and delaying the overall result time. So what
is the solution for this?

→ A probable solution for this, that split the workload into more pieces than
there are threads. So as soon as threads complete it’s task, it can fetch
other tasks to execute from the queue.

→ Synchronization, when there are shared resources.
→ Complexity in dividing the workloads dynamically during the computation

process.

Use Cases of Multithreading

1. Web Servers

Use Cases of Multithreading

1. Web Servers
2. Database systems

Use Cases of Multithreading

1. Web Servers
2. Database systems
3. Gaming

Use Cases of Multithreading

1. Web Servers
2. Database systems
3. Gaming
4. Scientific Computing

Use Cases of Multithreading

1. Web Servers
2. Database systems
3. Gaming
4. Scientific Computing
5. Financial trading

Advantages of Multithreading

→ Enhanced performance
→ Improve GUI responsiveness
→ Simultaneous and parallelized occurrence of tasks
→ Better use of cache storage by utilization of resources
→ Better use of CPU resource

Disadvantages of Multithreading

→ Complex debugging and testing processes
→ Overhead switching of context
→ Increased potential for deadlock occurrence
→ Increased difficulty level in writing a program
→ Unpredictable results

When to use Multithreading?

When to use Multithreading?

→ 1. Separation of Concerns:

When to use Multithreading?

→ 1. Separation of Concerns:
→ Example: Consider a music streaming application for a smartphone or

computer. This application fundamentally has two primary responsibilities:

When to use Multithreading?

→ 1. Separation of Concerns:
→ Example: Consider a music streaming application for a smartphone or

computer. This application fundamentally has two primary responsibilities:
→ It must stream music data from the server, decode the audio files, and play them

without any interruptions.

When to use Multithreading?

→ 1. Separation of Concerns:
→ Example: Consider a music streaming application for a smartphone or

computer. This application fundamentally has two primary responsibilities:
→ It must stream music data from the server, decode the audio files, and play them

without any interruptions.
→ Simultaneously, it should respond to user inputs such as Play, Pause, Next,

Previous, or adjusting the volume.

When to use Multithreading?
→ 1. Separation of Concerns:
→ Example: Consider a music streaming

application for a smartphone or
computer. This application fundamentally
has two primary responsibilities:
→ It must stream music data from the server,

decode the audio files, and play them
without any interruptions.

→ Simultaneously, it should respond to user
inputs such as Play, Pause, Next,
Previous, or adjusting the volume.

When to use Multithreading?

→ 2. Improved Performance - Task and Data Parallelism:

When to use Multithreading?

→ 2. Improved Performance - Task and Data Parallelism:
 Task Parallelism: Divide a single task into sub-tasks and execute them
in parallel.

When to use Multithreading?

→ 2. Improved Performance - Task and Data Parallelism:
 Task Parallelism: Divide a single task into sub-tasks and execute them
in parallel.
 Data Parallelism: Each thread performs the same operation on
different parts of the data.

When to use Multithreading?

→ 2. Improved Performance - Task and Data Parallelism:
 Task Parallelism: Divide a single task into sub-tasks and execute them
in parallel.
 Data Parallelism: Each thread performs the same operation on
different parts of the data.
→ Example:

→ Data Parallelism: Processing elements of an array in parallel.

→ std::execution::par is one of the execution policy from C++17.

→ std::execution::par is one of the execution policy from C++17.
→ It implies parallel execution for the standard library algorithms. And that

means all the execution of different processes will happen in parallel
“Safely”.

When not to use Multithreading?

When not to use Multithreading?

→ 1. Complexity vs. Benefit:

When not to use Multithreading?

→ 1. Complexity vs. Benefit:
 Concurrency adds complexity to code, making it harder to understand
and maintain.

When not to use Multithreading?

→ 1. Complexity vs. Benefit:
 Concurrency adds complexity to code, making it harder to understand
and maintain.
 If the expected performance gain isn't worth this increased
complexity, it's better to avoid concurrency.

When not to use Multithreading?

→ 1. Complexity vs. Benefit:
 Concurrency adds complexity to code, making it harder to understand
and maintain.
 If the expected performance gain isn't worth this increased
complexity, it's better to avoid concurrency.
 2. Performance Overhead:

When not to use Multithreading?

→ 1. Complexity vs. Benefit:
 Concurrency adds complexity to code, making it harder to understand and
maintain.
 If the expected performance gain isn't worth this increased complexity, it's
better to avoid concurrency.
 2. Performance Overhead: Starting a thread has its inherent overhead. If tasks
complete quickly, the overhead of launching the thread might outweigh the benefits.

When not to use Multithreading?

 3. Limited Resources:

When not to use Multithreading?

 3. Limited Resources: Threads consume system resources. Too many
threads can slow down the system, exhaust memory, and even lead to
resource contention.

When not to use Multithreading?

 3. Limited Resources: Threads consume system resources. Too many
threads can slow down the system, exhaust memory, and even lead to
resource contention.
4. Potential for More Bugs:

When not to use Multithreading?

 3. Limited Resources: Threads consume system resources. Too many
threads can slow down the system, exhaust memory, and even lead to
resource contention.
4. Potential for More Bugs: Multithreaded code can lead to race conditions,
deadlocks, and other tricky bugs that might not appear in single-threaded
applications.

 Factors Affecting Multithreaded Performance

 Wait, Let's have a look at something basic.

Caches

→ But why?

Caches

→ Synchronization mechanisms, such as those involved in locking, are closely
tied to cache coherence and the consistency of memory.

Caches

→ Synchronization mechanisms, such as those involved in locking, are closely
tied to cache coherence and the consistency of memory.

→ Many optimization techniques manipulate cache coherence protocols to
enhance performance.

Caches

→ Synchronization mechanisms, such as those involved in locking, are closely
tied to cache coherence and the consistency of memory.

→ Many optimization techniques manipulate cache coherence protocols to
enhance performance.

→ For instance, a locking mechanism may initially perform a read operation on
a lock before attempting to change it atomically.

Caches

→ Synchronization mechanisms, such as those involved in locking, are closely
tied to cache coherence and the consistency of memory.

→ Many optimization techniques manipulate cache coherence protocols to
enhance performance.

→ For instance, a locking mechanism may initially perform a read operation on
a lock before attempting to change it atomically.

→ This initial read operation does not provoke cache invalidations across other
cores, which helps to conserve latency and on-chip bandwidth.

Storage Level Characteristics

Taken from: John Hennessy and David Patterson, Computer
Architecture: A
Quantitative Approach, Morgan-Kaufmann, 2007. (4th Edition)

Caches

→ When the CPU retrieves a requested memory value that is already stored in
the cache, it can access it rapidly. This occurrence is known as a cache hit.

Caches

→ When the CPU retrieves a requested memory value that is already stored in
the cache, it can access it rapidly. This occurrence is known as a cache hit.

→ When the CPU requests a value that is not present in the cache, it
necessitates retrieving the data from outside the processor chip. This event
is referred to as a cache miss.

Caches

→ When the CPU retrieves a requested memory value that is already stored in the
cache, it can access it rapidly. This occurrence is known as a cache hit.

→ When the CPU requests a value that is not present in the cache, it necessitates
retrieving the data from outside the processor chip. This event is referred to as
a cache miss.

→ Even though the overall capacity of a cache can range from several kilobytes
to megabytes, the data is not transferred all at once but rather in smaller
segments known as cache lines. Commonly, the size of a single cache line is
around 64 bytes.

Generating Cache hits

→ Two Assumptions to be true

Generating Cache hits

→ Two Assumptions to be true
→ Temporal Locality: When a program accesses a memory location, it is

likely to access that same location again in the near future.

Generating Cache hits

→ Two Assumptions to be true
→ Temporal Locality: When a program accesses a memory location, it is likely to

access that same location again in the near future.
→ Spatial Locality: This concept predicts that if a particular storage location is

accessed, locations whose addresses are close by are likely to be accessed soon.

 And if these assumptions are not true then you will generate a lot of cache
misses and re- loading the caches a lot.

How bad is Cache miss?

→ In C, C++, 2D arrays get stored in
memory by row at a time,
means A[i][j].

How bad is Cache miss?

→ In C, C++, 2D arrays get stored in
memory by row at a time,
means A[i][j].

→ For large arrays, would it be better
to add the elements by row, or by
column? Which will avoid the most
cache misses?

How bad is Cache miss?

How bad is Cache miss?

How bad is Cache miss?

How bad is Cache miss?

How bad is Cache miss?

→ So basically design your data structure so it can take benefit of sequential
memory order to avoid cache misses

 Sequential memory order -> Array[i][j]
 Jump-around-in-memory order-> Array[j][i]

How different cores keep track of the cache line?

How different cores keep track of the cache line
modifications?
→ We need some sort of organisations around cores so each aware of the

modifications of the cache line.

How different cores keep track of the cache line
modifications?
→ We need some sort of organisations around cores so each aware of the

modifications of the cache line.
→ Something called MESI came here in this scenario.
 1. Modified
 2. Exclusive
 3. Shared
 4. Invalid

A Simplified View of
How MESI Works

→ Imagine we have two cores A and B.
1. Core A fetches data into its cache. This data is

now exclusively in Core A's cache, and the cache
line status is marked as "Exclusive."

2. Subsequently, Core B accesses data from the
identical memory region. This data is loaded into
Core B's cache. Consequently, both cache lines
(in Core A and Core B) transition to a "Shared"
state to reflect that they hold identical data.

3. If Core B then modifies this shared data, its cache
line status updates to "Modified." Concurrently,
Core A's cache line that contains this data
becomes "Invalid" to prevent outdated data
usage.

4. When Core A needs to read the same data it
originally fetched, it finds the data in its cache is
invalidated due to Core B's modification. Core B
must write its modified data back to the main
memory, and Core A must reload the updated
data from the main memory. Post this update,
both cache lines are again in a "Shared" state,
indicating they have the latest data from memory.

Step Cache
Line A

Cache
Line B

1 Exclusive

2 Shared Shared

3 Invalid Modified

4 Shared Shared

→ The last thing you just see, is "false sharing", It's called false because the
cores aren't actually needing to share this data; they just happen to be
located close enough in memory to end up on the same cache line and
which have a huge performance hit.

→ Thread A Cache Line Thread B Cache Line

→ To be noted that false sharing does not create incorrect result but impact
performance. (So it means that it prevents you from the incorrect results)

→ Factors affecting Multithreadead Performance

Factors affecting the performance of Multithreaded
code

→ Number of Processors: The performance of multithreaded applications
can significantly differ based on whether the hardware has a single
multicore processor or multiple processors with fewer cores. A program
must spawn a number of threads that align with the available cores to fully
utilize the hardware without leaving processing power unused.

Factors affecting the performance of Multithreaded
code
→ Number of Processors: The performance of multithreaded applications can significantly

differ based on whether the hardware has a single multicore processor or multiple
processors with fewer cores. A program must spawn a number of threads that align with
the available cores to fully utilize the hardware without leaving processing power unused.

 Example: A server with 8 cores can optimally run 8 threads simultaneously. If your
application creates 16 threads, it may not gain any additional performance benefit due to
context switching overhead and could actually perform worse due to thread management
overhead.

Factors affecting the performance of Multithreaded
code
→ Number of Processors: The performance of multithreaded applications can significantly differ

based on whether the hardware has a single multicore processor or multiple processors with fewer
cores. A program must spawn a number of threads that align with the available cores to fully utilize
the hardware without leaving processing power unused.

 Example: A server with 8 cores can optimally run 8 threads simultaneously. If your application
creates 16 threads, it may not gain any additional performance benefit due to context switching
overhead and could actually perform worse due to thread management overhead.
And you may want to use std::thread::hardware_concurrency in such cases to correctly identify the
number of available concurrent threads, something like

→ But using std::thread::hardware_concurrency() requires caution as it
simply returns the number of hardware threads available on the system. It
doesn't consider other running threads or applications, potentially leading to
thread oversubscription and performance degradation.

→ But using std::thread::hardware_concurrency() requires caution as it
simply returns the number of hardware threads available on the system. It
doesn't consider other running threads or applications, potentially leading to
thread oversubscription and performance degradation.

→ std::async() avoids the issue of oversubscription by being aware of all
asynchronous calls within the application. It can schedule tasks more
effectively without creating more threads than the system can handle
efficiently.

Factors affecting the performance of Multithreaded
code

→ Data Contention and Cache Coherence Traffic: When multiple threads
try to read and write to the same data, they can interfere with each other,
causing delays. Cache coherence mechanisms ensure that a change in one
cache is reflected across all caches, which can cause traffic and slow down
performance.

Factors affecting the performance of Multithreaded
code

→ Data Contention and Cache Coherence Traffic: When multiple threads
try to read and write to the same data, they can interfere with each other,
causing delays. Cache coherence mechanisms ensure that a change in one
cache is reflected across all caches, which can cause traffic and slow down
performance.

 Example:

Factors affecting the performance of Multithreaded
code

→ Locality of Data: Data that is accessed frequently should be kept close in
memory to take advantage of cache locality. If data is spread out, more time
is spent retrieving it, which can slow down the program.

Factors affecting the performance of Multithreaded
code

→ Locality of Data: Data that is accessed frequently should be kept close in
memory to take advantage of cache locality. If data is spread out, more time
is spent retrieving it, which can slow down the program.

 Example:

Factors affecting the performance of Multithreaded
code

→ Excessive Context Switching: If there are too many threads in relation to
the number of processors, the operating system may spend a significant
amount of time switching between threads (context switching), which can
reduce the overall efficiency of the application.

Factors affecting the performance of Multithreaded
code

→ Excessive Context Switching: If there are too many threads in relation to
the number of processors, the operating system may spend a significant
amount of time switching between threads (context switching), which can
reduce the overall efficiency of the application.

 Example:

Factors affecting the performance of Multithreaded
code

→ False Sharing: This occurs when threads on different processors modify
variables that, while independent, are located on the same cache line. This
can cause unnecessary invalidation and synchronization of caches, leading
to performance degradation.

Factors affecting the performance of Multithreaded
code

→ False Sharing: This occurs when threads on different processors modify
variables that, while independent, are located on the same cache line. This
can cause unnecessary invalidation and synchronization of caches, leading
to performance degradation.

 Consider this example in C:

False Sharing

→ The functions thread1 and thread2 sum the values in the arrays they get
as arguments to the variables sum1 and sum2. Since sum1 and sum2 are
defined next to each other, the compiler is likely to allocate them next to
each other in memory, in the same cache line.

False Sharing

→ First, thread1 reads sum1 into its cache. Since the line is not present in
any other cache thread1 gets it in exclusive state:

Step Thread1 Thread2
1 Exclusive

False Sharing

→ thread2 now reads sum2. Since thread1 already had the cache line in
exclusive state, this causes a downgrade of the line in thread1's cache and
the line is now in shared state in both caches:

Step Thread1 Thread2
1 Exclusive
2 Shared Shared

False Sharing

→ thread1 now writes its updated sum to sum1. Since it only has the line in
shared state, it must upgrade the line and invalidate the line in thread2's
cache:

Step Thread1 Thread2
1 Exclusive
2 Shared Shared
3 Modified Invalid

False Sharing

→ thread2 now writes its updated sum to sum2. Since thread1 has invalidate
the cache line in it's cache it gets a coherence miss, and must invalidate the
line in thread1's cache forcing thread1 to do a coherence write-back:

Step Thread1 Thread2
1 Exclusive
2 Shared Shared
3 Modified Invalid
4 Invalid Modified

False Sharing

→ The next iteration of the loops now starts, and thread1 again reads sum1.
Since thread2 just invalidated the cache line in thread1's cache, it gets a
coherence miss. It must also downgrade the line in thread2's cache, forcing
thread2 to do a coherence write-back:

 Step Thread1 Thread2
1 Exclusive
2 Shared Shared
3 Modified Invalid
4 Invalid Modified
5 Shared Shared

False Sharing

→ thread2 finally reads sum2. Since it has the cache line in shared state, it can
read it without and coherence activity, and we are back in the same
situation as after step 2:

Step Thread1 Thread2
1 Exclusive
2 Shared Shared
3 Modified Invalid
4 Invalid Modified
5 Shared Shared

False Sharing

→ To be noted

False Sharing

→ To be noted
→ Memory accesses may not interleave as described in earlier scenarios.

False Sharing

→ To be noted
→ Memory accesses may not interleave as described in earlier scenarios.

→ The same updates, coherence misses, and coherence write-backs would occur
despite different interleaving.

False Sharing

→ To be noted
→ Memory accesses may not interleave as described in earlier scenarios.

→ The same updates, coherence misses, and coherence write-backs would occur
despite different interleaving.

→ In simple examples, the compiler might allocate sum1 and sum2 to registers, avoiding
memory access and false sharing issues.

False Sharing

→ To be noted
→ Memory accesses may not interleave as described in earlier scenarios.

→ The same updates, coherence misses, and coherence write-backs would occur
despite different interleaving.

→ In simple examples, the compiler might allocate sum1 and sum2 to registers, avoiding
memory access and false sharing issues.

→ For more complex programs, the compiler may not be able to keep sum1 and sum2 in
registers, leading to potential false sharing.

False Sharing

→ To fix a false sharing problem we need to make sure that the data accessed
by the different threads is allocated to different cache lines.

False Sharing

→ To fix a false sharing problem we need to make sure that the data accessed
by the different threads is allocated to different cache lines.

→ So we can update our sum1 and sum2 variable like this in C++ .

False Sharing

→ Or you can use standard way to align using
std::harware_destructive_interference_size

False Sharing

→ Or you can use standard way to align using
std::harware_destructive_interference_size

→ It is typically provide the minimum offset between two objects to avoid
false sharing.

False Sharing

→ Or you can use standard way to align using
std::harware_destructive_interference_size

→ It's value is typically 64 bytes (which is constant)
→ Example:

Causes of False Sharing

Causes of False Sharing

→ Per-Thread Data Arrays: Allocating an array where each element is used
by a different thread, such as per-thread counters, can lead to false sharing
due to proximity in memory.

Causes of False Sharing

→ Per-Thread Data Arrays: Allocating an array where each element is used
by a different thread, such as per-thread counters, can lead to false sharing
due to proximity in memory.

 Example: A typical programming pattern, for example consider this example

Causes of False Sharing

→ Matrix Parallelization
Patterns: Another common cause
of false sharing is parallelizations
of algorithms that work on
matrices or multi-dimensional
arrays.

Causes of False Sharing

→ Matrix Parallelization
Patterns: Another common cause
of false sharing is parallelizations of
algorithms that work on matrices or
multi-dimensional arrays.

→ Fine-grained division of matrices for
multi-threading can lead to threads
working on adjacent elements within
the same cache line, increasing the
chance of false sharing.

Causes of False Sharing

→ Matrix Parallelization
Patterns: Another common cause of false
sharing is parallelizations of algorithms
that work on matrices or multi-dimensional
arrays.

→ Fine-grained division of matrices for multi-
threading can lead to threads working on
adjacent elements within the same cache
line, increasing the chance of false sharing.

→ For example, assume the elements marked
in green and blue in this example are
written by two different threads:

Causes of False Sharing

→ A more coarse grained division of the matrix between the threads will allow
the threads to work on different cache lines to a greater degree, avoiding
false sharing:

Causes of False Sharing

→ Struct Field Accesses: Accesses to different fields in a structure from
different threads.

 Example:

Causes of False Sharing

→ Dynamic Memory Allocation and False Sharing: When a program
dynamically allocates memory, particularly for small objects, it risks placing
data used by concurrent threads within the same cache line.

Causes of False Sharing

→ Dynamic Memory Allocation and False Sharing: When a program
dynamically allocates memory, particularly for small objects, it risks placing
data used by concurrent threads within the same cache line.

→ One strategy to mitigate this is to allocate larger memory blocks for a
thread's exclusive use. Instead of allocating each small object separately,
which might scatter them across the same cache lines, allocating a single,
larger array can localize a thread's data, reducing the chances of cache line
collision.

Causes of False Sharing

→ Dynamic Memory Allocation and False Sharing: When a program
dynamically allocates memory, particularly for small objects, it risks placing data
used by concurrent threads within the same cache line.

→ One strategy to mitigate this is to allocate larger memory blocks for a thread's
exclusive use. Instead of allocating each small object separately, which might
scatter them across the same cache lines, allocating a single, larger array can
localize a thread's data, reducing the chances of cache line collision.

→ And else, if it is possible, you can align the data objects causing false sharing.

Multithreading enabled standard library

→ Many algorithms in standard library have there parallel versions.

Multithreading enabled standard library

→ Many algorithms in standard library have there parallel versions.
→ Including std::sort, std::find, std::replace, std:;count_if, std::for_each

Multithreading enabled standard library

→ Many algorithms in standard library have there parallel versions.
→ Including std::sort, std::find, std::replace, std:;count_if,

std::for_each, etc.
→ To use them you will call it in the same way, except for a new parameter

execution_policy.

Multithreading enabled standard library

→ Many algorithms in standard library have there parallel versions.
→ Including std::sort, std::find, std::replace, std:;count_if,

std::for_each, etc.
→ To use them you will call it in the same way, except for a new parameter

execution_policy.
→ For example, parallel sorting can be enabled something like this
 std::sort(std::execution::par, v.begin(), v.end());

Final Summary

→ Multithreading is indeed not easy.
→ Spawning thread is not cheap, and so synchronization.
→ The best synchronization is no synchronization. – Not my words
→ Use standard library that are trivial to parallelize for example

std::transform, std::reduce.
→ Use tools like C2C Linux Perf to detect false sharing.
→ Believe in compiler.

 🥳 The Party Scenario:
→ Thanks for listening! Any Questions?
→ Keep in touch on twitter @phyBrackets.
→ Disclaimer: It’s much about science.

	Optimizing Mulithreading Performance
	Shivam Kunwar (shivam.kunwar@kdab.com)
	Outline of the talk:
	Multithreading
	Multithreading (2)
	Multithreading (3)
	Multithreading (4)
	Question
	Slide 9
	So what is Multithreading, formally?
	So what is Multithreading, formally? (2)
	Example
	Example (2)
	Example (3)
	Slide 15
	Slide 16
	Slide 17
	Quick benchmark for the summing the total number of elements in
	Multithreading
	Generic way to use multithreading for performance improvement
	Generic way to use multithreading for performance improvement (2)
	Generic way to use multithreading for performance improvement (3)
	Generic way to use multithreading for performance improvement (4)
	Generic way to use multithreading for performance improvement (5)
	And yes it isn’t simple as it seems!
	Concerns to care about
	Concerns to care about (2)
	Concerns to care about (3)
	Concerns to care about (4)
	Concerns to care about (5)
	Use Cases of Multithreading
	Use Cases of Multithreading (2)
	Use Cases of Multithreading (3)
	Use Cases of Multithreading (4)
	Use Cases of Multithreading (5)
	Advantages of Multithreading
	Disadvantages of Multithreading
	When to use Multithreading?
	When to use Multithreading? (2)
	When to use Multithreading? (3)
	When to use Multithreading? (4)
	When to use Multithreading? (5)
	When to use Multithreading?
	When to use Multithreading? (6)
	When to use Multithreading? (7)
	When to use Multithreading? (8)
	When to use Multithreading? (9)
	Slide 48
	Slide 49
	When not to use Multithreading?
	When not to use Multithreading? (2)
	When not to use Multithreading? (3)
	When not to use Multithreading? (4)
	When not to use Multithreading? (5)
	When not to use Multithreading? (6)
	When not to use Multithreading? (7)
	When not to use Multithreading? (8)
	When not to use Multithreading? (9)
	When not to use Multithreading? (10)
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Caches
	Caches (2)
	Caches (3)
	Caches (4)
	Storage Level Characteristics
	Caches (5)
	Caches (6)
	Caches (7)
	Generating Cache hits
	Generating Cache hits (2)
	Generating Cache hits (3)
	How bad is Cache miss?
	How bad is Cache miss? (2)
	How bad is Cache miss? (3)
	How bad is Cache miss? (4)
	How bad is Cache miss?
	How bad is Cache miss? (5)
	How bad is Cache miss? (2)
	How different cores keep track of the cache line?
	How different cores keep track of the cache line modifications?
	How different cores keep track of the cache line modifications? (2)
	A Simplified View of How MESI Works
	Slide 86
	Slide 87
	Slide 88
	Factors affecting the performance of Multithreaded code
	Factors affecting the performance of Multithreaded code (2)
	Factors affecting the performance of Multithreaded code (3)
	
	(2)
	Factors affecting the performance of Multithreaded code (4)
	Factors affecting the performance of Multithreaded code (5)
	Factors affecting the performance of Multithreaded code (6)
	Factors affecting the performance of Multithreaded code (7)
	Factors affecting the performance of Multithreaded code (8)
	Factors affecting the performance of Multithreaded code (9)
	Factors affecting the performance of Multithreaded code (10)
	Factors affecting the performance of Multithreaded code (11)
	False Sharing
	False Sharing
	False Sharing (2)
	False Sharing (3)
	False Sharing (4)
	False Sharing (5)
	False Sharing (6)
	False Sharing (7)
	False Sharing (8)
	False Sharing (9)
	False Sharing (10)
	False Sharing (11)
	False Sharing (12)
	False Sharing (13)
	False Sharing (14)
	False Sharing (15)
	False Sharing (16)
	Causes of False Sharing
	Causes of False Sharing (2)
	Causes of False Sharing (3)
	Causes of False Sharing (4)
	Causes of False Sharing (5)
	Causes of False Sharing (6)
	Causes of False Sharing (7)
	Causes of False Sharing (8)
	Causes of False Sharing (9)
	Causes of False Sharing (10)
	Causes of False Sharing (11)
	Multithreading enabled standard library
	Multithreading enabled standard library (2)
	Multithreading enabled standard library (3)
	Multithreading enabled standard library (4)
	Final Summary
	🥳 The Party Scenario:

