Single-entry
Single-exit

A closer look at the rule...

Lightning talk @ Meeting C++ (2022-08-31)
Mirostaw Opoka (opoka.tech)

https://opoka.tech/

The rule

“subprograms should have a single entry and a single exit only”

IEC 61508 (1997) — Functional safety of electrical/ electronic/ programmable
electronic safety-related systems.

Part 7 — Overview of techniques and measures

Section C.2.9 — Modular approach (page 69),
Reference: “Structured Design” book from 1979

http://vtda.org/books/Computing/Programming/StructuredDesign_EdwardYourdonLarryConstantine.pdf

The rule background

- the idea to simplify program flow can be traced back to
“Notes on structure programming” by E. W. Dijkstra (1970),

- back then most programming was done in assembler, Fortran or Cobol (there was
no C (1972), not to mention C++ (1985)),

- jumping around in the code was a standard (goto),
- this style led to problems with readability and thus with maintainability of the code,

- the rule was postulated to address this problem

https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF

Selected standards and the rule

e |EC 61508: Subprograms should have a single entry and a single exit only,

e MISRA: A function should have a single point of exit at the end,

Google style guide: not mentioned,
° : Multiple points of exit are permitted by AUTOSAR C++ Coding Guidelines,

° : Don’t insist to have only a single return-statement in a function

The rule in practice

Result processMessage(const System &system, const Message &msg)

{

Result retValue = Result::UNKNOWN;

if (system.isConnected())
I
4
if (system.isInitialized())

{
if (msg.isvalid())
{
// system is connected, initialized and the message is valid
// ... process the message
retvalue = Result::0K;
}
else
{
retvalue = Result::INVALID_MESSAGE;
}
}
else
{
retvalue = Result::NOT_INITIALIZED;
¥
¥
else

5 |
L

retvalue = Result::NOT_CONNECTED;
1
J

‘ return retvalue;

}

Result processMessage(const System &system, const Message &msg)

g
L

if (!system.isConnected())
{
‘ return Result::NOT_CONNECTED;

—

if (!system.isInitialized())
F

L
return Result::NOT_INITIALIZED;

if (Imsg.isvalid())
{
1S
return Result::INVALID_MESSAGE;
¥

// system is connected, initialized and the message is valid
// ... process the message
return Result::0K;

The rule - pros and cons

Single-entry/Single-exit non Single-entry/Single-exit
Readability = quickly gets too nested and exiting early:
thus harder to understand
- makes the rest of the code less
nested and thus easier to read,
- frees “mental resources” for
following the code
Resources one place for freeing resource allocation and cleaning up
resources (clean up at the exit) | must be taken care of (for example
using RAII)
Debugging | might be easier to debug breakpoints at few places
(breakpoint at exit)

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

References

Standards:
IEC 61508-7 referencing “Structured Design” book from 1979

MISRA C++ 2008

[]

e Google C++ guide

e Autosar

e |SO C++ core guidelines
Other:

e Example of multi-entries and multi-exit code in Cobol
e “Notes on structured programming” by Prof.dr. E. W. Dijkstra

http://www.cechina.cn/eletter/standard/safety/iec61508-7.pdf
http://vtda.org/books/Computing/Programming/StructuredDesign_EdwardYourdonLarryConstantine.pdf
http://www.tlemp.com/download/rule/MISRA-CPP-2008-STANDARD.pdf
https://google.github.io/styleguide/cppguide.html
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_RS_CPP14Guidelines.pdf
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rnr-single-return
https://softwareengineering.stackexchange.com/questions/118703/where-did-the-notion-of-one-return-only-come-from#118793
https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF

