
Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Disclaimer

This isn’t your usual C++ talk! It contains

• Math

• Physics

• Mentions your math and physics teacher

• C++ Code

All of this is for the greater good!

• Comprehensive solution for physical units in matrices

• Even stronger type-safety in C++

1

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

SW developer at Bosch (since 2008)

• Focus on solving real-world problems using C++

• Object tracking framework for self-driving car projects

• Author and maintainer of type_safe_matrix library

Daniel Withopf

2

PHYSICAL UNITS FOR
MATRICES:

HOW HARD CAN IT BE?

PHYSICAL UNITS FOR
MATRICES:

HOW HARD* CAN IT BE?

*GEORGE W. HART, MULTIDIMENSIONAL ANALYSIS

T

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Background

C++ in the automotive industry / at Bosch

• Development processes with lots of code reviews

• Code should be written for the reader

• C++ types that express the content

• Leverage C++’s type system to catch problems early

• (in-house) physical units library (for scalars) in use for over 15 years

• (in-house) linear algebra library for vector and matrix arithmetic

5

=> Missing: general solution for physical units in linear algebra types

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

=> Missing: general solution for physical units in linear algebra types

Background

C++ open-source libraries and recent proposals for the standard library

• Linear algebra: Eigen, blaze and http://wg21.link/P1385

• Physical units: https://github.com/mpusz/units (http://wg21.link/P1935), boost units

fs_vector<si::length<si::metre>, 3> v = { 1 * m, 2 * m, 3 * m };
fs_vector<si::length<si::metre>, 3> u = { 3 * m, 2 * m, 1 * m };
std::cout << "v + u = " << v + u << "\n"; // [4m, 4m, 4m]

6

http://wg21.link/P1385
https://github.com/mpusz/units
http://wg21.link/P1935

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Further motivation

7

P1417: Historical lessons for C++ linear algebra library standardization

“Linear algebra libraries all must figure out what to do if users attempt to perform operations on objects
with incompatible dimensions. […] This gets more complicated, though, if we generalize “compatible
dimensions” to the mathematical idea of a “vector space.” Two vectors might have the same dimensions,
but it still might not make sense to add them together. For example, I can’t add a coordinate in 3-D
Euclidean space to a quadratic polynomial with real coefficients, just like I can’t add meters to seconds.“
[Sec 3.6]

”Expression templates may hinder use of auto […] because the type […] may be some expression type that
may hold references to concrete linear algebra objects. Returning the expression may result in dangling
references“ [Sec 3.1]

http://wg21.link/P1417

http://wg21.link/P1417

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Non-expressive code examples

Can you tell what this line of code does?

• What do the vector entries describe?

• Is this an out-of-bounds access?

2nd try:

• Have the right index constants for the vector type been used?

• Is assigning a position to a velocity really intended?

3rd try:

• In which coordinate frame are measurement_vector and other_vector?

measurement_vector[2] = other_vector[3];

measurement_vector[VELOCITY_X] = other_vector[POSITION_X];

measurement_vector[VELOCITY_X] = other_vector[VELOCITY_X];

8

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

What we ideally want

My linear algebra library wishlist:

• Protection against out-of-bounds access (compile-time please!)

• Expressive (and enforced) names for vector / matrix entries

• Support of non-uniform physical units in vectors / matrices

• Compatibility check for physical units during all matrix operations (compile-time)

• Coordinate frame annotation for vectors and transformations

9

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Named index structs

struct DX_C :
CartesianIdxType<VehicleFrontAxleCoords,

tsm::CartesianXAxis,
si::Metre>{};

struct DY_SENSOR_C :
CartesianIdxType<SensorCoords,

tsm::CartesianYAxis,
si::Metre>{};

coordinate frame

si unit template
axis identifier

Identify each entry with a unique name: DistanceX_C

struct VehicleFrontAxleCoords : public CoordinateSystem<si::Metre> {
using Moving = std::false_type; // is the frame moving wrt to the “fixed” earth frame?

};

DistanceX_SENSOR_C
DistanceY_SENSOR_C
VelocityX_SENSOR_C
VelocityY_SENSOR_C
Acceler.X_SENSOR_C
Acceler.Y_SENSOR_C

10

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

One type for almost everything

11

template<class Scalar, class RowIdxList, class MatrixTag>
using TypeSafeVector = TypeSafeMatrix<Scalar,

RowIdxList,
tsm::TypeList<tsm::NoIdxType>,
MatrixTag>;

template<class Scalar, class RowIdxList, class ColIdxList, class MatrixTag>
class TypeSafeMatrix {
... // methods
private:
Eigen::Matrix<Scalar, SizeOf<RowIdxList>::value, SizeOf<ColIdxList>::value> m_matrix;

};

template<class Scalar>
using PosVec3InVehicleFrame<Scalar> =
tsm::TypeSafeVector<Scalar, tsm::TypeList<DX_C, DY_C, DZ_C>, tsm::VectorTag>;

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Creating a vector and access to elements

// full check, only the same index from the same vector type can be assigned
pos_vehicle.assignEntry(other_position.entry<DX_C>()); // (***)

// unit check, allows assigning a y position from a different frame
pos_sensor.coeffSiRef<DX_SENSOR_C>() = pos_vehicle.coeffSi<DY_C>(); // (**)

12

// no checks except for scalar type, allows assigning a velocity to a position
pos_vehicle.at<DX_C>() = vel_sensor.at<VY_SENSOR_C>(); // (*)

PosVec3InVehicleFrame<double> pos_vehicle{
other_pos.entry<DX_C>(), // copy 1 entry from other vector (***)
tsm::wrapCoeffSi<DY_C>(si::Metre<double>{1.}), // unit argument (**)
…};

PosVec3InVehicleFrame<double> pos_vehicle{
other_pos.entry<DX_C>(), // copy 1 entry from other vector (***)
…,
…};

PosVec3InVehicleFrame<double> pos_vehicle{
other_position.entry<DX_C>(), // copy 1 entry from other vector (***)
tsm::wrapCoeffSi<DY_C>(si::Metre<double>{1.}), // unit argument (**)
tsm::wrapCoeff<DZ_C>(3.)}; // plain scalar argument (*)

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

More ways to create a vector / matrix

13

DeltaPosVec3InSensorFrame<double> delta_pos_sensor{
si::Second<double>{2.0} * other_vel_sensor.head<2>(), // other 2d vector in same frame
other_delta_pos.entry<DZ_SENSOR_C>()};

ሺ ሻ ሺ ሻ ሺ ሻ ሺ ሻ

tsm::TypeSafeMatrix<double, tsm::TypeList<DX_C, VX_C>, tsm::TypeList<DX_C, VX_C>,
tsm::CovarianceMatrixTag> covariance{

tsm::wrapCoeffSi<DX_C, DX_C>{...}, tsm::wrapCoeffSi<DX_C, VX_C>{...},
tsm::wrapCoeffSi<VX_C, DX_C>{...}, tsm::wrapCoeffSi<VX_C, VX_C>{...}

};

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Matrix element access

Declare a type-safe (jacobian) matrix

tsm::TypeSafeMatrix<double,
tsm::TypeList<MEAS_DR, // radial dist[m]

MEAS_VR, // radial vel[m/s]
MEAS_ANGLE>, // angle [rad]

tsm::TypeList<DX_C, // distance x [m]
DY_C, // distance y [m]
DZ_C>, // distance z [m]

tsm::JacobianMatrixTag> jacobian{...};

Jacobian matrix
DX_C
[m]

DY_C
[m]

DZ_C
[m]

MEAS_DR [m]

MEAS_VR [m/s]

MEAS_ANGLE
[rad]

14

tsm::TypeSafeMatrix<double,
tsm::TypeList<MEAS_DR, // radial dist[m]

MEAS_VR, // radial vel[m/s]
MEAS_ANGLE>, // angle [rad]

tsm::TypeList<DX_C, // distance x [m]
DY_C, // distance y [m]
DZ_C>, // distance z [m]

tsm::JacobianMatrixTag> jacobian{...};

Jacobian matrix
DX_C
[m]

DY_C
[m]

DZ_C
[m]

MEAS_DR [m]

MEAS_VR [m/s]

MEAS_ANGLE
[rad]

tsm::TypeSafeMatrix<double,
tsm::TypeList<MEAS_DR, // radial dist[m]

MEAS_VR, // radial vel[m/s]
MEAS_ANGLE>, // angle [rad]

tsm::TypeList<DX_C, // distance x [m]
DY_C, // distance y [m]
DZ_C>, // distance z [m]

tsm::JacobianMatrixTag> jacobian{...};

Jacobian matrix
DX_C
[m]

DY_C
[m]

DZ_C
[m]

MEAS_DR [m]

MEAS_VR [m/s]

MEAS_ANGLE
[rad]

tsm::TypeSafeMatrix<double,
tsm::TypeList<MEAS_DR, // radial dist[m]

MEAS_VR, // radial vel[m/s]
MEAS_ANGLE>, // angle [rad]

tsm::TypeList<DX_C, // distance x [m]
DY_C, // distance y [m]
DZ_C>, // distance z [m]

tsm::JacobianMatrixTag> jacobian{...};

Jacobian matrix
DX_C
[m]

DY_C
[m]

DZ_C
[m]

MEAS_DR [m]

MEAS_VR [m/s]

MEAS_ANGLE
[rad]

tsm::TypeSafeMatrix<double,
tsm::TypeList<MEAS_DR, // radial dist[m]

MEAS_VR, // radial vel[m/s]
MEAS_ANGLE>, // angle [rad]

tsm::TypeList<DX_C, // distance x [m]
DY_C, // distance y [m]
DZ_C>, // distance z [m]

tsm::JacobianMatrixTag> jacobian{...};

Jacobian matrix
DX_C
[m]

DY_C
[m]

DZ_C
[m]

MEAS_DR [m]

MEAS_VR [m/s]

MEAS_ANGLE
[rad]

tsm::TypeSafeMatrix<double,
tsm::TypeList<MEAS_DR, // radial dist[m]

MEAS_VR, // radial vel[m/s]
MEAS_ANGLE>, // angle [rad]

tsm::TypeList<DX_C, // distance x [m]
DY_C, // distance y [m]
DZ_C>, // distance z [m]

tsm::JacobianMatrixTag> jacobian{...};

Jacobian matrix
DX_C
[m]

DY_C
[m]

DZ_C
[m]

MEAS_DR [m]

MEAS_VR [m/s]

MEAS_ANGLE
[rad]

tsm::TypeSafeMatrix<double,
tsm::TypeList<MEAS_DR, // radial dist[m]

MEAS_VR, // radial vel[m/s]
MEAS_ANGLE>, // angle [rad]

tsm::TypeList<DX_C, // distance x [m]
DY_C, // distance y [m]
DZ_C>, // distance z [m]

tsm::JacobianMatrixTag> jacobian{...};

Jacobian matrix
DX_C
[m]

DY_C
[m]

DZ_C
[m]

MEAS_DR [m]

MEAS_VR [m/s]

MEAS_ANGLE
[rad]

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Matrix element access

Which physical unit should be returned?

??? value = jacobian.coeffSi<MEAS_VR, DY_C>();

Jacobian
matrix

DX_C
[m]

DY_C
[m]

DZ_C
[m]

[m]

[m/s]
[m/s]^row_exp *

[m] ^col_exp

[rad]

Column exponent = -1

R
o

w
ex

p
o

n
e

n
t

=
1

15

Jacobian matrix
DX_C
[m]

DY_C
[m]

DZ_C
[m]

MEAS_DR [m]

MEAS_VR [m/s] ???

MEAS_ANGLE
[rad]

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Taxonomy of vector and matrix types

Matrix / vector type
Row

exponent
Column

exponent
Nr of

columns

Covariance matrix 1 1

Jacobian matrix 1 -1

Information matrix -1 -1

Position vector (VectorTag) 1 0 1

Position vector collection 1 0 >1

Displacement vector (DeltaVectorTag) 1 0 1

Displacement vector collection 1 0 >1

Information vector -1 0 1

Information vector collection -1 0 >1

16

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Now we have unit-safe
element access and out-of-bounds protection

Can we do more???

17

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Is unit-safety enough?

Let’s try being unit-safe for all operations

Should this operation be allowed?

Should this be allowed?

Really?

𝐷𝑋𝐶[𝑚]

𝐷𝑌𝐶[𝑚]
+

𝑉𝑋𝐶[𝑚/𝑠]

𝑉𝑌𝐶[𝑚/𝑠]

[𝑚]

[𝑚]
+ ∆

[𝑚]

[𝑚]

𝐷𝑋𝐶
𝐷𝑌𝐶

+ ∆
𝐷𝑌𝐶
𝐷𝑍𝐶

Index types do not match!

Unit-safety is not enough,
we need index-type safety!

18

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

3.1 0 0 0
0 2.4 0 0
0 0 8.5 0
0 0 0 6.4

𝐶𝑜𝑣

1

1

What happens when e.g. transforming a covariance matrix to another frame?

3.1 0 0 0
0 2.4 0 0
0 0 8.5 0
0 0 0 6.4

𝐷𝑋𝐶
𝐷𝑌𝐶
𝑉𝑋𝐶
𝑉𝑌𝐶

𝐶𝑜𝑣

1

1

1.0 0 0 0
0 1.0 0 0
0 0 1.0 0
0 0 0 1.0

𝐷𝑋𝐶 𝐷𝑌𝐶 𝑉𝑋𝐶 𝑉𝑌𝐶𝐽𝑎𝑐

1

-1

∗

Matrix multiplication

cov_sensor = jacobian * cov_vehicle * jacobian.transpose();

𝐷𝑋𝑆𝐸𝑁 𝐷𝑌𝑆 𝑉𝑋𝑆 𝑉𝑌𝑆𝐸𝑁
𝐷𝑋𝑆𝐸𝑁
𝐷𝑋𝑆𝐸𝑁
𝑉𝑋𝑆𝐸𝑁
𝑉𝑌𝑆𝐸𝑁

3.1 0 0 0
0 2.4 0 0
0 0 8.5 0
0 0 0 6.4

𝐷𝑋𝐶 𝐷𝑌𝐶 𝑉𝑋𝐶 𝑉𝑌𝐶

𝐷𝑋𝐶
𝐷𝑌𝐶
𝑉𝑋𝐶
𝑉𝑌𝐶

𝐶𝑜𝑣

1

1

∗

1.0 0 0 0
0 1.0 0 0
0 0 1.0 0
0 0 0 1.0

𝐷𝑋𝐶 𝐷𝑌𝐶 𝑉𝑋𝐶 𝑉𝑌𝐶𝐽𝑎𝑐

1

-1

∗
1.0 0 0 0
0 1.0 0 0
0 0 1.0 0
0 0 0 1.0

𝐷𝑋𝐶
𝐷𝑌𝐶
𝑉𝑋𝐶
𝑉𝑌𝐶

𝐽𝑎𝑐𝑇

−1

1
𝐷𝑋𝑆𝐸𝑁 𝐷𝑌𝑆 𝑉𝑋𝑆 𝑉𝑌𝑆𝐸𝑁

19

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Important classes

Building blocks:

template<class Promotion, // infers resulting TypeSafeMatrix

class LinalgExpression> // Eigen expression

class MatrixExpression : public

MatrixBase<MatrixExpression<Promotion, LinalgExpression>>{};

template<class Scalar, class RowIdxList, class ColIdxList, class MatrixTag>

class TypeSafeMatrix : public MatrixBase<

TypeSafeMatrix<ScalarT, RowIdxList, ColIdxList, MatrixTagT>>{};

template<class Derived> class MatrixBase{};

20

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

What operator+ looks like
template<typename OtherLeaf_T>
auto operator+(const MatrixBase<OtherLeaf_T>& other) const

-> detail::MatrixExpression<detail::Promotion2dAddition<Leaf_T, OtherLeaf_T>,
decltype(this->underlying() + other.underlying())> {…}

template<typename Expr1, typename Expr2>
struct Promotion2dAddition

: RequiresIdenticalScalarType<Expr1, Expr2>, // inject Scalar type
RequiresIdenticalRowIndices<Expr1, Expr2>, // inject RowIdxList type
RequiresIdenticalColIndices<Expr1, Expr2>, // inject ColIdxList type
RequiresIdenticalRowUnitExponent<Expr1, Expr2>,
RequiresIdenticalColUnitExponent<Expr1, Expr2>,
RequiresMatrixTagsAdditionCompatible<typename Expr1::MatrixTag, // inject MatrixTag type

typename Expr2::MatrixTag> {};

template<typename Expr1, typename Expr2>
struct RequiresIdenticalRowIndices {

static_assert(detail::TypeIdentityChecker<typename Expr1::RowIdxList,
typename Expr2::RowIdxList>::value,

"Row index types are not equal as required");
using RowIdxList = typename Expr1::RowIdxList;

};

21

template<typename Expr1, typename Expr2>
struct Promotion2dAddition

: RequiresIdenticalScalarType<Expr1, Expr2>, // inject Scalar type
RequiresIdenticalRowIndices<Expr1, Expr2>, // inject RowIdxList type
RequiresIdenticalColIndices<Expr1, Expr2>, // inject ColIdxList type
RequiresIdenticalRowUnitExponent<Expr1, Expr2>,
RequiresIdenticalColUnitExponent<Expr1, Expr2>,
RequiresMatrixTagsAdditionCompatible<typename Expr1::MatrixTag, // inject MatrixTag type

typename Expr2::MatrixTag> {};

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Compiler error messages

../type_safe_matrix/typelist_operations.h: In instantiation of ‘class

detail::TypeIdentityChecker<TypeList<DX_C, DY_C, DZ_C>, TypeList<DX_C, DY_C> >’:

../type_safe_matrix/promotion_precondition_checks.h:216:35: required from ‘class

detail::RequiresIdenticalRowIndices<TypeSafeMatrix<double, TypeList<DX_C, DY_C, DZ_C>,

TypeList<NoIdx>, VectorTag>, TypeSafeMatrix<double, TypeList<DX_C, DY_C>, TypeList<NoIdx>,

DeltaVectorTag> >’

../type_safe_matrix/typed_matrix_promotions.h:197:7: required from ‘class

detail::Promotion2dAddition<TypeSafeMatrix<double, TypeList<DX_C, DY_C, DZ_C>,

TypeList<NoIdx>, VectorTag>, TypeSafeMatrix<double, TypeList<DX_C, DY_C>, TypeList<NoIdx>,

DeltaVectorTag> >’

......

../type_safe_matrix/test/usage_examples.cpp:505:67: required from here

../type_safe_matrix/typelist_operations.h:66:3: error: static assertion failed: actual type

(1st template arg of TypeIdentityChecker) does not match desired type (2nd arg);

auto res = tsm::PosVector3InVehicleFrame{} + tsm::DeltaPosVector2InVehicleFrame{};

22

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Compiler error message with C++20 concepts

error: no match for 'operator+' (operand types are 'Vector3' {aka 'TypeSafeMatrix<double,

TypeList<DX_C, DY_C, DZ_C>, TypeList<NoIdxType>, VectorTag>'} and 'Vector2' {aka

'TypeSafeMatrix<double, TypeList<DX_C, DY_C>, TypeList<NoIdxType>, VectorTag>'})

44 | auto res = Vector3{} + Vector2{};
| ~~~~~~~~~ ^ ~~~~~~~~~
| | |
| | TypeSafeMatrix<[...],TypeList<DX_C, DY_C>,[...],[...]>
| TypeSafeMatrix<[...],TypeList<DX_C, DY_C, DZ_C>,[...],[...]>

33 | TypeSafeMatrix operator+(const OtherT& other) requires Addable<TypeSafeMatrix,

OtherT> | ^~~~~~~~

<source>:33:19: note: constraints not satisfied

required for the satisfaction of 'Addable<TypeSafeMatrix<ScalarT, RowIdxListT, ColIdxListT,

MatrixTagT>, OtherT>‘

note: nested requirement 'is_same_v<typename T1::RowIdxListType, typename

T2::RowIdxListType>' is not satisfied

auto res = tsm::PosVector3InSensorFrame{} + tsm::DeltaPosVector2InSensorFrame{};

23

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Uniform matrices vs. Index-oriented design (TypeSafeMatrix)

24

Dimensioned arrays

Multipliable matrices

Square matrices

Squareable matr.

Endomorphic

Dimensionless square

Uniform square

Dimensionally

symmetric

adapted from

[Hart]*

*George W. Hart: Multidimensional Analysis, Springer

fs_vector<si::length<si::metre>, 3> v = {1*m, 2*m, 3*m};
fs_vector<si::length<si::metre>, 3> u = {3*m, 2*m, 1*m};
std::cout << "v + u = " << v + u << "\n"; // [4m,4m,4m]

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Uniform matrices vs. Index-oriented design (TypeSafeMatrix)

What can be added / multiplied?

25

Dimensioned arrays

Multipliable matrices

Square matrices

Squareable matr.

Endomorphic

Dimensionless square

Uniform square

Dimensionally

symmetric

A * B jac jac^T cov vector

jac maybe no maybe maybe

jac^T no maybe no no

cov no maybe no no

vector no no no no

adapted from

[Hart]*

a + b
𝑫𝑿
𝑫𝒀

𝑫𝒀
𝑫𝒁

∆
𝑫𝑿
𝑫𝒀

𝑽𝑿
𝑽𝒀

(DX DY)T yes yes yes no

(DY DZ) T yes yes no

∆ሺDX DY) T yes no

(VX VY) T yes

A * B jac jac^T cov vector

jac yes yes yes yes

jac^T yes yes yes yes

cov yes yes yes yes

vector yes yes yes yes

TypeSafeMatrixUnit as value type

*George W. Hart: Multidimensional Analysis, Springer

a + b
𝑫𝑿
𝑫𝒀

𝑫𝒀
𝑫𝒁

∆
𝑫𝑿
𝑫𝒀

𝑽𝑿
𝑽𝒀

(DX DY)T no no yes no

(DY DZ) T no no no

∆ሺDX DY) T yes no

(VX VY) T yes

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

vehicle_velocity = vehicle_T_odom * odom_velocity;

Transformation and rotation matrices

How to define an isometry (a transformation consisting of rotation and translation):

This enables automatic compile-time checks for correctness of transformation order:

Valid or not?

tsm::Isometry<double, tsm::VehicleFrontAxleCoords, tsm::OdomCoords, 3> vehicle_T_odom{…};

// transform a position vector from odom to vehicle coords
vehicle_position = vehicle_T_odom * odom_position;

vehicle_velocity = vehicle_T_odom.linear() * odom_velocity;

Velocities should not be translated => Compile error

vehicle_delta_vector = vehicle_T_odom.linear() * odom_delta_vector;

26

tsm::Isometry<double, tsm::VehicleFrontAxleCoords, tsm::OdomCoords, 3> vehicle_T_odom{…};

Destination
frame

tsm::Isometry<double, tsm::VehicleFrontAxleCoords, tsm::OdomCoords, 3> vehicle_T_odom{…};

Source
frame

Destination
frame

Source
frame

Scalar
type

Dimension

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

User-defined index structs

• Until now, we mainly used 2d- and 3d cartesian position and velocity vectors in different coordinate frames

• A TypeSafeMatrix is not restricted to this use-case, it can also be used to represent other quantities

• Operations that are only allowed for cartesian vectors:

• Transformation to a different frame

• norm(), cross(), dot()

27

struct SLOPE : tsm::NonCartesianIdxType<si::Metre> {}; // slope of a line fit
struct OFFSET : tsm::NonCartesianIdxType<si::Metre> {}; // offset of a line fit

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Auto variables and expression templates

// method returning by value

Eigen::Vector3d calculateOffset() {...}

Eigen::Vector3d vectorA = Eigen::Vector3d::Ones();

28

auto sum = vectorA + calculateOffset();

double result = sum.norm();

const auto& sum = vectorA + calculateOffset();

double result = sum.norm();

double result = (vectorA + calculateOffset()).norm();

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

How to prevent usage of MatrixExpression
template<class T>

void staticAssertIfLvalueMatrixExpression() {

static_assert(!IsTsmMatrixExpression<std::decay_t<T>> || std::is_rvalue_reference<T>::value);

}

template<class Leaf>

class MatrixBase {

template<class Other>

auto operator+(Other&& other) const& -> detail::MatrixExpression<…> {

detail::staticAssertIfMatrixExpression<Leaf>();

detail::staticAssertIfLvalueMatrixExpression<decltype(other)>();

return {underlying() + std::forward<Other>(other).underlying()};

}

template<class Other>

auto operator+(Other&& other) const&& -> detail::MatrixExpression<…> {

detail::staticAssertIfLvalueMatrixExpression<decltype(other)>();

return {std::move(*this).underlying() + std::forward<Other>(other).underlying()};

}

};

29

template<class Leaf>

class MatrixBase {

template<class Other>

auto operator+(Other&& other) const& -> detail::MatrixExpression<…> {

detail::staticAssertIfMatrixExpression<Leaf>();

detail::staticAssertIfLvalueMatrixExpression<decltype(other)>();

return {underlying() + std::forward<Other>(other).underlying()};

}

template<class Other>

auto operator+(Other&& other) const&& -> detail::MatrixExpression<…> {

detail::staticAssertIfLvalueMatrixExpression<decltype(other)>();

return {std::move(*this).underlying() + std::forward<Other>(other).underlying()};

}

};

template<class T>

void staticAssertIfMatrixExpression() {

static_assert(!IsTsmMatrixExpression<std::decay_t<T>>, “”);

}

template<class Leaf>

class MatrixBase {

template<class Other>

auto operator+(Other&& other) const& -> detail::MatrixExpression<…> {

detail::staticAssertIfMatrixExpression<Leaf>();

detail::staticAssertIfLvalueMatrixExpression<decltype(other)>();

return {underlying() + std::forward<Other>(other).underlying()};

}

template<class Other>

auto operator+(Other&& other) const&& -> detail::MatrixExpression<…> {

detail::staticAssertIfLvalueMatrixExpression<decltype(other)>();

return {std::move(*this).underlying() + std::forward<Other>(other).underlying()};

}

};

template<class T>

void staticAssertIfLvalueMatrixExpression() {

static_assert(!IsTsmMatrixExpression<std::decay_t<T>> || std::is_rvalue_reference<T>::value);

}

template<class Leaf>

class MatrixBase {

template<class Other>

auto operator+(Other&& other) const& -> detail::MatrixExpression<…> {

detail::staticAssertIfMatrixExpression<Leaf>();

detail::staticAssertIfLvalueMatrixExpression<decltype(other)>();

return {underlying() + std::forward<Other>(other).underlying()};

}

template<class Other>

auto operator+(Other&& other) const&& -> detail::MatrixExpression<…> {

detail::staticAssertIfLvalueMatrixExpression<decltype(other)>();

return {std::move(*this).underlying() + std::forward<Other>(other).underlying()};

}

};

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Supported operations
A.uncheckedConstMatrix() const access to underlying matrix (Eigen / blaze)

A.uncheckedMutableMatrix() mutable access to underlying matrix (Eigen / blaze)

A.asDeltaVector() convert the vector to a delta vector

A.uncheckedAsNonDeltaVector() convert the vector to a non-delta vector

A.narrowing_cast<Scalar>() convert (lossy) the matrix to use another scalar type (e.g. int32_t → int16_t)

A.widening_cast<Scalar>() convert (lossless) the matrix to use another scalar type (e.g. int16_t → int32_t)

A.coeffSi<ROW_IDX, COL_IDX>() const access to individual matrix element as si unit

A.coeffSiRef<ROW_IDX, COL_IDX>() non-const access to individual matrix element as si unit

A.at<ROW_IDX, COL_IDX>() const access to individual matrix element as scalar

A.at<ROW_IDX, COL_IDX>() non-const access to individual matrix element as scalar

A.row<ROW_IDX>() const access to a row in a matrix

A.assignRow<ROW_IDX>(b) assign a row in a matrix

A.col<COL_IDX>() access a column in a matrix

A.assignCol<COL_IDX>(b) assign a column in a matrix

A.block<RowTypeList, ColTypeList>() const access to a block in a matrix

A.assignBlock<RowTypeList, ColTypeList>(B) assign a block in a matrix

30

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Supported operations
A.transpose() return the transpose of the matrix

A + - B Addition / substraction of 2 matrices (have to be compatible)

A * B multiplication of 2 matrices

a.dot(b) scalar product of 2 cartesian delta-vectors

A.determinant() determinant of a matrix (only available for dim < 4)

a.norm() calculates the L2-norm (length) of a cartesian delta-vector

a.squaredNorm() calculates the square L2-norm of a cartesian delta-vector

a.cross(b) calculates the cross product of 2 cartesian delta-vectors

a.head<n>() returns the first n elements of the vector

A.inverse() Calculates matrix inverse (only for dim <= 4)

a * si-unit; a / si-unit; a * scalar; a / scalar; divides a cartesian delta-vector by a si-unit / scalar

A.setRowTo<ROW_IDX>(scalar) set a row to a value

A.setColTo<COL_IDX>(scalar) set a column to a value

A = MatrixType::Ones(); ::Zero(); Identity(); Matrix expression where each entry is 1 / 0 / Identity matrix

a = VectorType::Unit<ROW_IDX>(); Set vector to the unit vector where only ROW_IDX is 1

A.setIdentity(); A.setOnes(); A.setZero(); set the matrix to identity / 1 / 0

31

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

What we get with TypeSafeMatrix

• Expressive (and enforced) names for vector / matrix entries

• Protection against out-of-bounds access (compile-time)

• Full support for physical units in vectors / matrices

• Compatibility check of index structs for all matrix operations (stronger condition than physical units-check)

• Include notion of coordinate frames

• Possibility to specify a coordinate frame for a vector and source and dest coordinate frame for transformations

• Abstraction of underlying linalg library

32

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
33

https://www.youtube.com/watch?v=7dExYGSOJzo

Physical units library http://wg21.link/P1385
Earlier version of my talk, contains more

details about object tracking

https://www.youtube.com/watch?v=J6H9CwzynoQ

Example how Uber / Aurora use their units library

We at Bosch are hiring
Join us to shape the future of automated driving

https://lnkd.in/d9w6pBVh

http://wg21.link/P1385
https://lnkd.in/d9w6pBVh

Daniel Withopf | 2021-06-23

© Robert Bosch GmbH 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Thank you for listening, looking forward to your
questions!

34

