
© 2019 Bloomberg Finance L.P. All rights reserved.

Value Proposition:

Allocator-Aware (AA)

Software
Meeting C++ 2019

November 15, 2019

John Lakos

Senior Architect

Value Proposition:
Allocator-Aware (AA) Software

John Lakos

Friday, November 15, 2019
This version is for Meeting C++’19, Berlin, Germany

2

Copyright Notice

3

© 2019 Bloomberg L.P. Permission is granted to copy, distribute, and display
this material, and to make derivative works and commercial use of it. The
information in this material is provided "AS IS", without warranty of any
kind. Neither Bloomberg nor any employee guarantees the correctness or
completeness of such information. Bloomberg, its employees, and its
affiliated entities and persons shall not be liable, directly or indirectly, in any
way, for any inaccuracies, errors or omissions in such information. Nothing
herein should be interpreted as stating the opinions, policies,
recommendations, or positions of Bloomberg.

Abstract

The performance benefits of supplying local allocators are well-known and substantial
[Lakos, ACCU’17]. Still, the real-world costs associated with orchestrating the
integration of allocators throughout a code base, including training, supporting tools,
enlarged interfaces (and contracts), and a heightened potential for inadvertent misuse
cannot be ignored. Despite substantial upfront costs, when one considers collateral
benefits for clients – such as rapid prototyping of alternative allocation strategies – the
case for investing in a fully allocator-aware (AA) software infrastructure (SI) becomes
even more compelling. Yet there remain many “concerns” based on hearsay or
specious conjecture that are either overstated or incorrect.

In this densely fact-infused talk, we begin by introducing a familiar analogy to drive
home the business case for AASI. Next we identify four syntactic styles based on three
distinct models: C++11, C++17, and a brand new language-based approach being
developed by Bloomberg for C++23 (or later). Costs – both real and imagined – will be
contrasted with performance as well as other important (“collateral”) benefits. The
talk will conclude with a closer look at the economic imperative of pursuing a low-cost
language-based alternative to AA software in post-modern C++.

4

Purpose of this Talk

Current state of affairs…

• Local Allocators -> performance!! [Lakos, CppNow’17]

• There are, however, real-world costs

• There are also important collateral benefits

• Yet there remain “concerns” (a.k.a. F.U.D.)

5

Purpose of this Talk

What we will do today …

• Present the four AA software styles

• Separate real from imagined costs

• Discuss important collateral benefits of AA

• Address common “concerns” surrounding AA

• Advocate for supporting AASI today

• Make business case using detailed analogy

• Hint at what C++2y allocators might look like
6

Outline

1. Introduction

2. Styles for Allocator-Aware (AA) Software

3. Performance Benefits

4. Costs

5. Collateral Benefits

6. “Concerns”

7

Outline

1. Introduction

2. Styles for Allocator-Aware (AA) Software

3. Performance Benefits

4. Costs

5. Collateral Benefits

6. “Concerns”

8

Introduction

Dynamic memory allocation is important!

• new/delete usually adequate

• Custom allocation is sometimes advantageous

– (and sometimes it’s absolutely necessary)

• But implementing custom allocation is costly.

• Thus, we are motivated to create (now):
Allocator-Aware (AA) Software Infrastructure

– (and soon): BB20V (Bloomberg’s 2020 Vision)

9

Introduction

Two approaches to custom memory allocation:

• Design bespoke (custom) data structures
when needed.

– Best possible performance

– High development/maintenance costs

• Build on Allocator Aware (AA) components

– Nearly best possible performance

– Much lower costs + some collateral benefits

10

Introduction

Two approaches to custom memory allocation:

• Design bespoke (custom) data structures
when needed.

– Best possible performance

– High development/maintenance costs

• Build on Allocator Aware (AA) components

– Nearly best possible performance

– Much lower costs + some collateral benefits

11

Introduction

Airline Analogy to Allocator Awareness (AA):

• First Class

– Best possible

• Economy

– Cheapest possible

12

Introduction

Airline Analogy to Allocator Awareness (AA):

• First Class

– Best possible

• Economy

– Cheapest possible

13

Introduction

14

First

Class
Economy

Introduction

15

First

Class
Economy

Benefit
(utility)

0% 50% 100%

Potential

Incremental

Benefit

Introduction

16

First

Class
Economy

Benefit
(utility)

0% 50% 100%a

Potential

Incremental

Benefit

Introduction

17

First

Class
Economy

Benefit
(utility)

0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Introduction

18

First

Class
Economy

Benefit
(utility)

0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Different
Units!!!

Introduction

19

First

Class
Economy

Benefit
(utility)

0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Introduction

20

First

Class
Economy

Benefit
(utility)

0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Introduction

21

First

Class
Economy

Benefit
(utility)

0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Introduction

22

First

Class
Economy

Benefit
(utility)

0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Introduction

Airline Analogy to Allocator Awareness (AA):

• First Class

– Best possible

• Economy

– Cheapest possible

• Business Class and Premium Economy

– Almost as good as first class

– Costs just slightly more than Economy

23

Introduction

24

First

Class
Economy

Benefit
(utility)

0% 50% 100%a

Potential

Incremental

Benefit

Introduction

25

Benefit
(utility)

a-0% 50% 100%a

Potential

Incremental

Benefit

First

Class
Economy

Introduction

26

Benefit
(utility)

a- a+0% 50% 100%a

Potential

Incremental

Benefit

First

Class
Economy

Introduction

27

Upper

Class

First

Class
Economy

Benefit
(utility)

a- a+0% 50% 100%a

Potential

Incremental

Benefit

Introduction

28

Upper

Class

First

Class
Economy

Benefit
(utility)

a- a+0% 50% 100%a

Potential

Incremental

Benefit

Introduction

29

Upper

Class

First

Class
Economy

Premium
Economy

Benefit
(utility)

a- a+0% 50% 100%a

Potential

Incremental

Benefit

Introduction

30

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%a

Potential

Incremental

Benefit

Introduction

31

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Introduction

32

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Introduction

33

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Introduction

34

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Introduction

35

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Introduction

36

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Introduction

37

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Introduction

38

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

ACTUAL

Incremental

Benefit

Introduction

39

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Introduction

40

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Introduction

41

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Incremental

Cost

Savings

Introduction

42

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Incremental

Cost

Savings

Introduction

43

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Incremental

Cost

Savings

Introduction

44

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Incremental

Cost

Savings

Different
Units!!!

Introduction

45

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Incremental

Cost

Savings

Different
Units!!!

Introduction

46

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Incremental

Cost

Savings

Introduction

47

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Incremental

Cost

Savings

Introduction

48

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Incremental

Cost

Savings

Introduction

Which airline do you think I fly most often?

• Delta Airlines (DA)

• Lufthansa (L)

• United Airlines (UA)

• American Airlines (AA)

• British Airways (BA)

49

Introduction

Which airline do you think I fly most often?

• Delta Airlines (DA)

• Lufthansa (L)

• United Airlines (UA)

• American Airlines (AA)*

• British Airways (BA)
*And I use their American Advantage (AA) credit card!

50

Introduction

Which airline do you think I fly most often?

• Delta Airlines (DA)

• Lufthansa (L)

• United Airlines (UA)

• American Airlines (AA)*

• British Airways (BA)
*And I use their American Advantage (AA) credit card!

(Consider this talk an AA meeting)

51

Introduction

52

Upper

Class

First

Class
Economy

Premium
Economy

Business
Class

Benefit
(utility)

a- a+0% 50% 100%

Cost
(effort)

a

Potential

Incremental

Benefit

Incremental

Cost

Savings

a

Upper Class
(Utilizing AA Software)

(New, Tiny)

First Class
(New, Smaller)

Economy

Value, Cost

a- a+0% 100%

Value
Percentile

Premium Economy
(More Value)

Business Class
(Less Cost)

Classic Economy
(Minimal Value)

Classic First Class
(Maximal Cost)

Increased
(Incremental)

Value!

Decreased
(Incremental)

Cost!

Potential
(Incremental)

Value

(Incremental) Upper-Class Cost (I
n

cr
em

en
ta

l)
 F

ir
st

-C
la

ss
C

o
st

Introduction

53

Cost/Benefit of Utilizing Allocator-Aware (AA) Software

1. Introduction

End of Section

Discussion?

54

1. Introduction

End of Section

Questions?

55

Outline

1. Introduction

2. Styles for Allocator-Aware (AA) Software

3. Performance Benefits

4. Costs

5. Collateral Benefits

6. “Concerns”

56

Outline

1. Introduction

2. Styles for Allocator-Aware (AA) Software

3. Performance Benefits

4. Costs

5. Collateral Benefits

6. “Concerns”

57

TIMTOWTDI (Pronounced “Tim Toady”)

• Three models

– C++11

– PMR (a.k.a. C++17)

– BB20V

• Four interface styles

– C++11

– BDE and C++17/PMR

– BB20V
58

2. Style for Allocator-Aware (AA) Software

Style Alternatives

Compile-time centric:

• Pros:

– Zero overhead (runtime/space): default allocator

– Allows non-standard addressing: shared memory

• Cons:

– Forces clients to be templates

– Raises interoperability issues

– Complex and difficult (extremely) to implement

– Not widely used except default; very widely disliked
59

2. Style for Allocator-Aware (AA) Software

C++11-Style [HIGH-COST]

Runtime Centric (Doesn’t Invade Object’s Type):

• Pros:

– Client's of AA objects need not be templated

– Enhanced Interoperability (e.g., vocabulary types)

– Reduced implementation cost (can be automated)

• Cons:

– Non-zero runtime and spatial overhead

– Significant implementation and maintenance costs

60

2. Style for Allocator-Aware (AA) Software

BDE-Style [MODERATE-COST]

PMR-style (a.k.a. C++17 Style)

• Based on same Model as BDE style

• Small syntactic difference:

– base-class pointer is wrapped in a C++11-style-
compliant object

• Expected to supplant BDE-style at Bloomberg

– E.g., BDE 4.0

61

2. Style for Allocator-Aware (AA) Software

PMR-style [MODERATE-COST]

Language support for PMR-style allocators

• Some annotation will denote a class as AA.

• Compiler does (almost) all of the “plumbing”...

… compiler-generated constructors too!

• Allocators are injected independently of the
constructor signatures…

... vaguely similar to installing a VTAB PTR.

62

2. Style for Allocator-Aware (AA) Software

BB20V-style [LOW-COST]

No matter what the AA style …

• Near same performance as bespoke solutions

• Much lower cost

• Important additional collateral benefits

63

2. Style for Allocator-Aware (AA) Software

Style Alternatives

2. Style for Allocator-Aware (AA) Software

End of Section

Discussion?

64

2. Style for Allocator-Aware (AA) Software

End of Section

Questions?

65

Outline

1. Introduction

2. Styles for Allocator-Aware (AA) Software

3. Performance Benefits

4. Costs

5. Collateral Benefits

6. “Concerns”

66

Outline

1. Introduction

2. Styles for Allocator-Aware (AA) Software

3. Performance Benefits

4. Costs

5. Collateral Benefits

6. “Concerns”

67

• Performance gains arise from:

1. Faster allocator/deallocation calls

2. Improved memory access (locality)

• Which dominates?

– Short-running programs: faster allocation calls

– Long-running programs: improved memory access

68

3. Performance Benefits

Considerations

Common Usage Pattern 1:

• Build up data structures (few or no deletes),
access them (briefly), then tear them down.

• Monotonic allocator:

– Deallocation is a no-op

– Memory returned when allocator destroyed

– Typically used from within a single thread

69

3. Performance Benefits

Allocation/Deallocation

Common Usage Pattern 2:

• Repeatedly allocate/deallocate blocks of a few
distinct sizes.

• Multipool allocator:

– Dynamically growing pools of fixed-size blocks
based on usage

– Deallocated blocks are retained for re-allocation

– Two variants: Thread-safe or not

70

3. Performance Benefits

Allocation/Deallocation

Common Usage Pattern 3:

• Need to destroy many objects en masse, and
objects own no resources except memory

• Managed allocator:

– Has method that releases all memory for reuse

– Object destructors are not called

– Supported by both monotonic and multipool

– Most local allocators are naturally managed ones

71

3. Performance Benefits

Allocation/Deallocation

Locality of data in time/space is important.

• Multi-level hardware caching most effective
when related data is physically close.

• Long-running programs that repeatedly
allocate and deallocate can diffuse initially
localized data.

• Loss in locality often dominates (“pwnz”)
runtime performance of allocate/deallocate.

• Local (arena) allocators attenuate diffusion.
72

3. Performance Benefits

Memory Locality

Local memory allocators facilitate threading

• If distinct threads have their own allocators,
synchronization (e.g., using mutexes) can
often be avoided or drastically reduced.

• If distinct threads use separate arena
allocators, accidental cache-line contention
(a.k.a. destructive interference, false sharing)
is naturally avoided.

73

3. Performance Benefits

Thread Locality

Achieving maximum performance requires

• Global knowledge of the application

• Solid understanding of different allocator
characteristics

74

3. Performance Benefits

Maximizing Performance

3. Performance Benefits

End of Section

Discussion?

75

3. Performance Benefits

End of Section

Questions?

76

Outline

1. Introduction

2. Styles for Allocator-Aware (AA) Software

3. Performance Benefits

4. Costs

5. Collateral Benefits

6. “Concerns”

77

Outline

1. Introduction

2. Styles for Allocator-Aware (AA) Software

3. Performance Benefits

4. Costs

5. Collateral Benefits

6. “Concerns”

78

4. Costs

Creating and Exploiting AA

Two different kinds of costs

1. Up-front costs creating (and maintaining) AASI

E.g., “Plumbing” constructors to propagate user-
supplied allocators to all the various subobjects

 Borne (mostly) by library/infrastructure developers

2. Incremental costs exploiting (or ignoring) AASI

E.g, Ongoing cognitive burden due to increased
interface (and contract) complexity; chance for misuse

 Borne by many (most?) application developers

79

4. Costs

Up-Front (LIBRARY DEVELOPMENT) Costs

Converting an allocator-unaware class to AA

• For typical* classes, relatively straightforward

– Add optional trailing allocator to every constructor.

– Forward the new argument to base classes, data
members, and any other managed sub-objects.

– Denote the type as AA using an allocator-trait
metafunction.

• *Non-typical classes are more challenging:

– E.g., Generic, template, and container types

80

4. Costs

Up-Front (LIBRARY DEVELOPMENT) Costs

Converting a generic container/template to AA

• Template types – e.g., std::complex

– Requires interacting with AA-ness of element type

• Container types – e.g., std::vector

– Involves touching methods other than constructors

• Non-allocating templates – e.g., std::pair

– Templated type does not itself allocate memory

• Irregular types – e.g., std::shared_ptr

– Requires domain knowledge of intended purpose
81

4. Costs

Up-Front (LIBRARY DEVELOPMENT) Costs

Maintenance burden

• More source code

– AA code is roughly ~10%* [4% – 17%] larger

• More training

– Learning to write (and properly test) AA types

• Opportunity cost

– Can require a lot of expert library developers’ time

– Other important projects might be delayed
*Measurment made on BDE code base (c 2017).

82

4. Costs

Up-Front (LIBRARY DEVELOPMENT) Costs

Mitigating factors

• Readily lends it self to automation

– bde_verify, a currently-available static-
analysis tool, catches most common errors.

– BB20V will eliminate (most?) manual “plumbing”…

• Developing BB20V technology is itself a
substantial one-time up-front cost.

– Analogous to self-driving car technology… (tbc...)

83

4. Costs

Incremental (APPLICATION-DEVELOPER) Costs

Typical cost of using AASI is comparatively small*

• Much easier/faster than “rolling your own”

– Simply supply desired allocator at construction

– Does (of course) require additional testing effort

• No need for custom memory allocation?

– Ignore AA parameters

– Use and test normally

– Use is entirely “opt in”

*We’ll discuss modern C++ style later in this talk.
84

4. Costs

Incremental (APPLICATION-DEVELOPER) Costs

Additional cognitive burden

• Users will still see AA features

– Enlarged (programmatic) interface:

e.g., Trailing allocator argument in every constructor

– Enlarged (English) contracts (e.g., for constructors):

e.g., “Optionally specify a basic allocator to supply...”

• Although the net benefit for those who exploit
AA clear, the overall net user benefit is less so.

85

4. Costs

Incremental (APPLICATION-DEVELOPER) Costs

Additional opportunity for client misuse

• Allowing an object to outlive its allocator

– [rare] by, say, returning a dynamically allocated
object, created using a local (e.g., stack) allocator

• Inappropriate use of special-purpose allocator

– [common] by, say, repeatedly reusing a monotonic
allocator created outside of a long-running loop

• Misuse can be catastrophic or simply fail to
improve performance – either way it’s a cost!

86

4. Costs

Incremental (APPLICATION-DEVELOPER) Costs

Incompatibility with some modern C++ features

• AA classes require non-trivial CTORs

– Compiler-generated copy operations won’t work

– Problem is exacerbated by C++11 move variants

– Aggregate initialization is not currently* available

• The assertion that “allocators do not interact
well with modern C++ move semantics” is false!

– We will demonstrate why/how later on in this talk.

*The (language-based) BB20V-style eliminates all such syntactic incompatibilities.

87

4. Costs

Incremental (APPLICATION-DEVELOPER) Costs

Lifetime management issues

• The (productive) lifetime of an object must not
exceed that of its allocator.

– Requires additional care by application developers

• Limits applicability of certain standard facilities
that manage object lifetimes as they neither
track nor extend allocator lifetimes.

– E.g., std::shared_ptr and std::weak_ptr

88

4. Costs

Incremental (APPLICATION-DEVELOPER) Costs

Education, tools, and governance

• Additional administrative costs of AA software

– Proper training (continuing education)

– Code reviews (by properly trained reviewers)

– Developer-facing (e.g., static analysis) tools

– Company-wide policies (on allocator-usage)

• Not atypical of other powerful paradigms

– E.g., Multithreading, unit testing, and C++ itself!

89

Bottom line

• Real, substantial costs exist

– [substantial] Up-front library development costs

– [modest] Incremental application developer costs

• A credible value proposition remains

– If we don’t have (hierarchically) reusable AASI then
some application developers will need to write it.

– All the rest will be forced to do without it.

90

4. Costs

Creating and Exploiting AA

4. Costs

End of Section

Discussion?

91

4. Costs

End of Section

Questions?

92

4. Costs

What Questions Are We Answering?

• What is the % of code that benefits allocators?

93

Outline

1. Introduction

2. Styles for Allocator-Aware (AA) Software

3. Performance Benefits

4. Costs

5. Collateral Benefits

6. “Concerns”

94

Outline

1. Introduction

2. Styles for Allocator-Aware (AA) Software

3. Performance Benefits

4. Costs

5. Collateral Benefits

6. “Concerns”

95

5. Collateral Benefits

… but Wait! There’s More!

Apart from frequent (and sometimes dramatic)
performance gains…

• …investing in an AASI provides other benefits

– rapid prototyping; modularity; (hierarchical) reuse;
testing; instrumentation; object placement

• Investment in ultra-performance-tuned, “one-
off” data structures are unlikely to provide any
of these valuable collateral benefits.

96

5. Collateral Benefits

Rapid Prototyping, and Predictability

• Design with AA is low-cost and low-risk.

1. Select from suite of existing allocation
algorithms.

2. Plug into AASI components in application.

3. Measure!

4. Tune.

5. Repeat, as needed.

• Deploy immediately!

97

5. Collateral Benefits

Rapid Prototyping, and Predictability

• Design with AA is low-cost and low-risk.

1. Select from suite of existing allocation
algorithms.

2. Plug into AASI components in application.

3. Measure!

4. Tune.

5. Repeat, as needed.

• Deploy immediately! And/or use as proof-of-
concept for custom-data-structure project!

98

5. Collateral Benefits

Modularity and Composition (Reuse)

The BDE-style allocators are chainable.

• I.e., One allocator provides some functionality,
then goes to its backing allocator when
additional memory is needed.

• Examples:

– A “small block” allocator can “fall back” on a “large
block” one for big memory chunks as needed.

– One allocator provides some features (e.g. metrics
gathering) and “falls back” to another for memory.

99

5. Collateral Benefits

Testing and Instrumentation

Testing: bslma::TestAllocator

• Check for memory leaks

– Log allocate/deallocate calls

– Match deallocations with known allocations

• Test exception safety

– Throw bsl::bad_alloc on cue in tests

• Test for memory-range overwrites (sentinels)

• Non-invasive

– Works on arbitrarily large-scale code
100

5. Collateral Benefits

Testing and Instrumentation

Instrumentation: Tagged Allocator Store (TAS)

• Monitor memory usage on an object basis

– Leverages bslma::Allocator vocabulary type

– Multiply inherits gtkma::AllocatorStore

– Uses dynamic_cast to “opt in” to reporting

• Strictly better than other solutions

– “Opt In” is fine-grained and entirely optional

– Provides object- as opposed to class-based info

– Works on arbitrarily large-scale code
101

5. Collateral Benefits

Whole-Object Placement

Placement of objects in memory is important!

• Allocators facilitate the placement of (entire)
objects in “special” memory.

– (placement new is for only the top-level footprint)

• Examples

– High-bandwidth memory (HBM)

– Hardware protected (no read and/or write access)

– Persistent or file-mapped (mmap) memory

• The gmalloc allocator is but one relevant example

102

5. Collateral Benefits

Garbage Collection

Sometimes we need to get down to the metal

• Traditional use of managed pointers can be
unnecessarily expensive in both time and space.

• Large (many-node) data structures built out of
raw pointers can be summarily “winked out”!

– The release method of a (managed) allocator will
unilaterally reclaims all memory (w/o destructors).

– Requirement: The data structures own no resources
other than memory from that allocator.

103

5. Collateral Benefits

Pluggable Customization

The utility of an AASI for realizing performance
and other, collateral benefits are open-ended.

• Most (but not all) of these benefits depend
largely (albeit indirectly) on the ability to
inject allocators into a system at runtime.

• Without having invested in an AASI, the cost
of pursuing such benefits would require
prohibitive expenditure of time and effort –
especially w.r.t. to bespoke data structures.

104

5. Collateral Benefits

End of Section

Discussion?

105

5. Collateral Benefits

End of Section

Questions?

106

Outline

1. Introduction

2. Styles for Allocator-Aware (AA) Software

3. Performance Benefits

4. Costs

5. Collateral Benefits

6. “Concerns”

107

Outline

1. Introduction

2. Styles for Allocator-Aware (AA) Software

3. Performance Benefits

4. Costs

5. Collateral Benefits

6. “Concerns”

108

6. “Concerns”

Why the Quotes?

Classical allocators specifications have sucked!

• C++98 allocators didn’t work at all!

– stateless (and completely useless) – Lakos’96

• C++03 allocators had “weasel words”

– Not portable: allowed but not required to work

• C++11 allocators are a pain in the @SS!

– Hard to write; invade object type; very hard to use

• C++17 allocators are much better

– Runtime polymorphic; much easier to write/use
109

6. “Concerns”

Why the Quotes?

People invent “reasons” for not liking allocators

• State-of-the-art allocators are as good or better

• PMR violates the zero-overhead principle (ZOP)

• (Generally) poor runtime performance trade-off

• (Unmanageable) verification/testing complexity

• (Gross) incompatibility with modern C++ style

• Don’t play nice w/modern C++ move semantics

• Object pools and factories are as good or better
110

6. “Concerns”

State-of-the-Art Global Allocators

“Advances in global memory allocators have
led to dramatic performance improvements –
especially with respect to real-world
multithreaded applications; wouldn’t
replacing the compiler-supplied global
memory allocator with a newer, “state-of-the-
art” one achieve most (if not all) of the real
benefits derived from assiduous use of local
allocators designed into a program?”

111

6. “Concerns”

State-of-the-Art Global Allocators

Global allocators are not (cannot be) sufficient.

• General-purpose global allocators are ignorant
of application-specific details.

• They cannot achieve the locality that local
allocators can.

• They cannot not provide the collateral
benefits.

112

6. “Concerns”

Zero-Overhead-Principle Compliance

“For all but the C++11 model, AA objects (1)
require maintaining extra state – even for the
most common case (i.e., where the default
allocator is used) – and (2) necessarily employ
virtual-function dispatch when allocating and
deallocating memory; isn’t that too inefficient
for AA software to be viable in C++?”

113

6. “Concerns”

Zero-Overhead-Principle Compliance

Neither letter nor spirit of ZOP is violated.

• The needed “extra space” can be addressed

– Used only upon allocation

– Stored outside the footprint

– Elided in common case(s) especially the default

• The virtual-function dispatch “overhead”

– Can be bound at compile time in relevant cases

– Is invariably negligible compared to added locality

– Is generally a red herring: allocators boost runtime
114

6. “Concerns”

Zero-Overhead-Principle Compliance

AA software makes prudent design trade-offs

1. Benefits to some with negligible cost to others

– Implementation change: O(N) -> O(log N)

2. Solid benefits for a few but small cost to other

– std::list<T>::size()must be O(1)

3. Large benefit for expected case but significate
cost for others

– Short-string optimization (SSO)

• Especially costly for (sparse) vectors of string data
115

6. “Concerns”

Zero-Overhead-Principle Compliance

AA software makes these design trade-offs

1. Benefits to some with negligible cost to others

– Implementation change: O(N) -> O(log N)

2. Solid benefits for a few but small cost to others

– std::list<T>::size()must be O(1)

Allocator Tax Analogy

Everyone must buy auto insurance:

Accidents are unusual – but not rare!

116

6. “Concerns”

Verification/Testing Complexity

“Failure to properly annotate types or
propagate allocators can undermine the
effectiveness of the allocation strategy and
can lead to memory leaks, especially when
‘winking out’ memory; aren't the extensive
verification, testing, and/or peer review
required to avoid such errors impracticable?”

117

6. “Concerns”

Verification/Testing Complexity

Almost every new library or language feature has
a learning curve and requires additional testing.

• Allocators are entirely opt-in (can ignore them)

• Special-purpose allocators do require training

• “Winking out” is inherently for experts only

• Static analysis tools (e.g., bde_verify) can help

• bslma::TestAllocator(e.g., leak testing)

• BB20V-styled will help dramatically!

118

6. “Concerns”

Compatibility with Modern C++ Style

“C++11 encourages a style of programming
where objects are more often passed and
returned by value, sometimes relying on
rvalue references to move these objects
efficiently whereas BDE style relies on passing
AA objects (by address) as arguments to
achieve optimal efficiency and control over
the allocator employed; isn't this ‘old-
fashioned’ style unjustifiably restrictive?”

119

6. “Concerns”

Compatibility with Modern C++ Style

Custom allocators do not affect function style

• Returning by value is inherently inefficient

– The retuned object must be constructed each time

– Supplying an allocator doesn’t help

• Returning an object by argument is faster

– Can reuse object to return multiple values

• E.g., Accumulator Pattern: tokenizer returning strings

– Full control over result allocator in client context

– Can build returning style on top (but not vice versa)
120

6. “Concerns”

Move vs. Allocate

“When two objects use different allocators,
move assignment degenerates to a copy
operation and swap becomes undefined
behavior; doesn’t that imply that local
allocators should be avoided to enable such
operations?”

121

6. “Concerns”

Move vs. Allocate

Move assignment is often not as efficient as copy!

• Object returned by value are not moved
– They are constructed in place via RVO (or NRVO)

• Moving objects around “mucks” with memory
i. Locality (cache-lines, caches, pages, etc.)
ii. Constructive interference (a.k.a. “true sharing”)
iii. Prefetching
iv. Optimal N-way-cache/main-memory-bank access

• Moving within a container (or an “arena”) is OK
– Preserves i and ii (above) but not necessarily iii or iv.

122

6. “Concerns”

Compared to Non-AA Alternatives

“Object pools and factories serve to reduce
overhead caused by allocating memory; so
why aren’t these other approaches as good (if
not better) alternatives to allocators?”

123

6. “Concerns”

Compared to Non-AA Alternatives

“Object pools and factories serve to reduce
overhead caused by allocating memory; so
why aren’t these other approaches as good (if
not better) alternatives to allocators?”

Memory allocation is reduced, not
obviated, and only in certain cases.

124

6. “Concerns”

Compared to Non-AA Alternatives

“Object pools and factories serve to reduce
overhead caused by allocating memory; so
why aren’t these other approaches as good (if
not better) alternatives to allocators?”

Memory allocation is reduced, not
obviated, and only in certain cases.

Do moving vans eliminate the need
for furniture companies?

125

6. “Concerns”

Compared to Non-AA Alternatives

Object pools are not replacements for allocators.

1. Object pools are not faster than allocators.

2. They are at different levels of abstraction:

– Object pools minimize construction/destruction

– Memory pools minimize allocation/deallocation

3. Object pools are created using memory pools

4. Object pools themselves should naturally be AA

– That way they too can enjoy the collateral benefits!

126

6. “Concerns”

End of Section

Discussion?

127

6. “Concerns”

End of Section

Questions?

128

Outline

1. Introduction

2. Styles for Allocator-Aware (AA) Software

3. Performance Benefits

4. Costs

5. Collateral Benefits

6. “Concerns”

129

Conclusion

Allocator-Aware Software Infrastructure (AASI):

• Custom memory allocation strategies’ impact:

– Performance

– Instrumentation

– Object placement …

• Historically, required bespoke data structures:

– Long delivery time

– Any collateral benefits cost extra

– No reuse …
130

Conclusion

AASI has real costs:

• “Fixed” engineering costs (for SI developers)

• Added operational costs

– Documentation

– Training

– Developer-facing tools

– Risk of misuse

• Resistance based on C++11-style allocators

131

Conclusion

Investing in an AASI is an economic decision:

• Provides nearly same runtime performance

• Lower incremental cost -> used more often

• Requires substantial up-front cost

• Comes with important collateral benefits

• C++11 experience -> “concerns” (F.U.D)

Do the benefits outweigh the costs?

132

a

Upper Class
(Utilizing AA Software)

(New, Tiny)

First Class
(New, Smaller)

Economy

Value, Cost

a- a+0% 100%

Value
Percentile

Premium Economy
(More Value)

Business Class
(Less Cost)

Classic Economy
(Minimal Value)

Classic First Class
(Maximal Cost)

Increased
(Incremental)

Value!

Decreased
(Incremental)

Cost!

Potential
(Incremental)

Value

(Incremental) Upper-Class Cost (I
n

cr
em

en
ta

l)
 F

ir
st

-C
la

ss
C

o
st

Conclusion

133

Cost/Benefit of Utilizing Allocator-Aware (AA) Software

Conclusion

WAIT!!

134

Conclusion

WAIT!!
What if BB20V could eliminate

all fixed costs entirely?

135

Conclusion

WAIT!!
What if BB20V could eliminate

all fixed costs entirely?

Now what do you say?
136

Conclusion

Should we (e.g., Bloomberg) invest in AASI?

 How can we afford not to?!
• The user benefits outweigh the costs now!

137

Conclusion

Should we (e.g., Bloomberg) invest in AASI?

 How can we afford not to?!
• The user benefits outweigh the costs now!

What about BB20V?
• Eliminates (SI-library) “fixed” costs entirely!

– Analogous to self-driving car technology

138

Conclusion

Should we (e.g., Bloomberg) invest in AASI?

 How can we afford not to?!
• The user benefits outweigh the costs now!

What about BB20V?
• Eliminates (SI-library) “fixed” costs entirely!

– Analogous to self-driving car technology

• Reduces (client) “use” costs to bare minimum

– Akin to using virtual functions in C++ today
139

Conclusion

140

C++98/03 allocators

14-Nov-19
Alisdair Meredith & Pablo Halpern, 2019

(CC BY 4.0)
141

Incomplete specification

Non-portable support for stateful allocators

Inadequate interoperability at scale

Excruciatingly difficult to write

Constructor interface bloat

AA types must be plumbed manually

AA implementations subject to human error

Object footprint not optimized by compiler

Incompatible with some C++ features

Benefits Obstacles

C++11 allocators

14-Nov-19
Alisdair Meredith & Pablo Halpern, 2019

(CC BY 4.0)
142

Runtime performance

Scoped allocator model

Localized (“arena”) object memory

Entire-object placement in memory

Per-object metrics/measurement

Inadequate interoperability at scale

Difficult to write

Constructor interface bloat

AA types must be plumbed manually

AA implementations subject to human error

Object footprint not optimized by compiler

Incompatible with some C++ features

Benefits Obstacles

C++17/20 allocators

14-Nov-19
Alisdair Meredith & Pablo Halpern, 2019

(CC BY 4.0)
143

Constructor interface bloat

AA types must be plumbed manually

AA implementations subject to human error

Object footprint not optimized by compiler

Incompatible with some C++ features

Runtime performance

Scoped allocator model

Localized (“arena”) object memory

Entire-object placement in memory

Per-object metrics/measurement

Ubiquitous vocabulary types (handles)

Simple (to write/use) allocators
Rapid prototyping (e.g., pmr containers)

Predefined resources (e.g., monotonic)

Benefits Obstacles

Our Goal (Not Yet Realized)

14-Nov-19
Alisdair Meredith & Pablo Halpern, 2019

(CC BY 4.0)
144

Runtime performance

Scoped allocator model

Localized (“arena”) object memory

Entire-object placement in memory

Per-object metrics/measurement

Ubiquitous vocabulary types (handles)

Simple (to write/use) allocators
Rapid prototyping (e.g., pmr containers)

Predefined resources (e.g., monotonic)

Works seamlessly with all C++ features

Simplified constructor interfaces

Fully automated by compiler

Fully optimized by compiler

Generalizable feature

A true pleasure to use

Not realized yet

Benefits Obstacles

Conclusion

The End

145

© 2019 Bloomberg Finance L.P. All rights reserved.

We are hiring!

Questions?

https://www.bloomberg.com/careers

