
Howard Hinnant

How To Initialize x from expression y

Meeting C++
2019-11-16

How To Initialize x from expression y

• You think that this would be simple, but
modern C++ gives us so many options.

• Options are good when they allow you
to fine tune your code.

• You just have to know how to use them.

How To Initialize x from expression y

auto x = y;

auto& x = y;

auto&& x = y;

auto x = X{y};

auto x = X(y);

Should x and y have the
same cv-unqualified type?

X x = y;

• Here are several of those options:
• Let’s start by classifying the use cases.

Yes

How To Initialize x from expression y

auto x = y;

auto& x = y;

auto&& x = y;

auto x = X{y};

auto x = X(y);

Should x and y have the
same cv-unqualified type?

X x = y;

Should x be a non-
reference type?

Yes

Yes

How To Initialize x from expression y

auto& x = y;

auto&& x = y;

auto x = X{y};

auto x = X(y);

Should x and y have the
same cv-unqualified type?

X x = y;

Should x be a non-
reference type?

auto x = y;

Note: The copy constructor nor the
move constructor should ever be
marked explicit, else this simple
syntax will fail (for no good reason).

NoYes

Yes

How To Initialize x from expression y

auto& x = y;

auto&& x = y;

auto x = X{y};

auto x = X(y);

Should x and y have the
same cv-unqualified type?

X x = y;

Should x be a non-
reference type?

auto x = y; Should x be a lvalue
or rvalue reference?

lvalue rvalue

NoYes

Yes

How To Initialize x from expression y

auto x = X{y};

auto x = X(y);

Should x and y have the
same cv-unqualified type?

X x = y;

Should x be a non-
reference type?

auto x = y; Should x be a lvalue
or rvalue reference?

auto& x = y; auto&& x = y;

Note: These are handy when a
copy or move should be avoided,
or when you want modifications
to x to write through to y.

for (auto& x : y)

No

lvalue rvalue

NoYes

Yes

How To Initialize x from expression y

auto x = X{y};

auto x = X(y);

Should x and y have the
same cv-unqualified type?

Should x be a non-
reference type?

auto x = y; Should x be a lvalue
or rvalue reference?

auto& x = y; auto&& x = y;

Yes

Is the type conversion
implicit?

X x = y;

Prefer implicit conversions?!

template <class Duration1, class Duration2>
auto
avg_nanoseconds(Duration1 d1, Duration2 d2)
{
 using namespace std::chrono;
 auto ns = nanoseconds{d1 + d2};
 return ns/2;
}

auto x = avg_nanoseconds(2us, 1ms); // 501000ns

Good!

Explicit conversion

How To Initialize x from expression y

Yes

Is the type conversion
implicit?

X x = y;

Prefer implicit conversions?!

template <class Duration1, class Duration2>
auto
avg_nanoseconds(Duration1 d1, Duration2 d2)
{
 using namespace std::chrono;
 auto ns = nanoseconds{d1 + d2};
 return ns/2;
}

auto x = avg_nanoseconds(2, 1); // 1ns

Oops!

Explicit conversion

Run-time error!

How To Initialize x from expression y

Yes

Is the type conversion
implicit?

X x = y;

int will explicitly convert to nanoseconds,
but won’t implicitly convert to nanoseconds.

Prefer implicit conversions?!

template <class Duration1, class Duration2>
auto
avg_nanoseconds(Duration1 d1, Duration2 d2)
{
 using namespace std::chrono;
 nanoseconds ns = d1 + d2;
 return ns/2;
}

auto x = avg_nanoseconds(2us, 1ms); // 501000ns

Still good!

Implicit conversion

How To Initialize x from expression y

Yes

Is the type conversion
implicit?

X x = y;

Prefer implicit conversions?!

template <class Duration1, class Duration2>
auto
avg_nanoseconds(Duration1 d1, Duration2 d2)
{
 using namespace std::chrono;
 nanoseconds ns = d1 + d2;
 return ns/2;
}

auto x = avg_nanoseconds(2, 1);
error: no viable conversion from 'int' to 'nanoseconds'
 nanoseconds ns = d1 + d2;
 ^ ~~~~~~~

Implicit conversion

How To Initialize x from expression y

Yes

Is the type conversion
implicit?

X x = y;

Safest
choice!

Prefer implicit conversions?!

auto
f(shared_ptr<Derived> p)
{
 // lots of code (too much really)…
 auto bp = shared_ptr<Base>{p};
 // more code…
}

Explicit conversion

This is not just a <chrono> issue!

How To Initialize x from expression y

Yes

Is the type conversion
implicit?

X x = y;

Prefer implicit conversions?!

auto
f(Derived* p)
{
 // lots of code (too much really)…
 auto bp = shared_ptr<Base>{p};
 // more code…
}

During refactor:

Run-time error!

Explicit conversion

This is not just a <chrono> issue!

How To Initialize x from expression y

Yes

Is the type conversion
implicit?

X x = y;

shared_ptr<Derived>was:

Prefer implicit conversions?!

auto
f(Derived* p)
{
 // lots of code (too much really)…
 shared_ptr<Base> bp = p;
 // more code…
}

During refactor:

Compile-time error!

Implicit conversion

This is not just a <chrono> issue!

How To Initialize x from expression y

Yes

Is the type conversion
implicit?

X x = y;

shared_ptr<Derived>was:
Safest
choice!

Fix with: Base* bp = p;

Yes

Is the type conversion
implicit?

X x = y;

Prefer implicit conversions?!
Yes, for clients!
No, for type authors.
The optimum lives between
these two interests.

• Clients should prefer implicit conversions
because these are the conversions the
type author considers the safest.

• Type authors should use explicit for
all conversions when the meaning of
the two types is drastically different.

How To Initialize x from expression y

No

No

lvalue rvalue

NoYes

Yes

How To Initialize x from expression y
Should x and y have the
same cv-unqualified type?

Should x be a non-
reference type?

auto x = y; Should x be a lvalue
or rvalue reference?

auto& x = y; auto&& x = y;

Yes

Is the type conversion
implicit?

X x = y;

NoYes

Can the conversion be
made with braces?

auto x = X{y}; auto x = X(y);

Add const (and/or volatile) as appropriate.

How To Initialize x from expression y

NoYes

Can the conversion be
made with braces?

auto x = X{y}; auto x = X(y);

auto v1 = vector<int>{3}; // v1 = {3}

auto v2 = vector<int>(3); // v3 = {0, 0, 0}

For example:

No

No

lvalue rvalue

NoYes

Yes

How To Initialize x from expression y
Should x and y have the
same cv-unqualified type?

Should x be a non-
reference type?

auto x = y; Should x be a lvalue
or rvalue reference?

auto& x = y; auto&& x = y;

Yes

Is the type conversion
implicit?

X x = y;

NoYes

Can the conversion be
made with braces?

auto x = X{y}; auto x = X(y);

Add const (and/or volatile) as appropriate.

