
14 November 2018 EMBEDDED-P-006 v1.4

Jonathan Pallant

MEETING EMBEDDED

EMBEDDED RUST ON THE BEAGLEBOARD X15

14 November 2018 EMBEDDED-P-006 v1.4

CAMBRIDGE BOSTON SINGAPORE SEATTLE SAN FRANCISCO

OUR LOCATIONS

2

14 November 2018 EMBEDDED-P-006 v1.43

▪ Statically compiled programming language

▪ Backed by Mozilla

▪ Being used to re-write Firefox

– e.g. new multi-threaded CSS engine

▪ Uses LLVM as the backend

– Supports x86, AMD64, PowerPC, MIPS,

SPARC, Arm (Cortex-M, -R and -A).

▪ Strong on type safety and memory safety

▪ First class tooling:

– build system, package manager, docs,

code formatter, etc

▪ Zero cost abstractions

– fast, reliable, productive: pick three

What is Rust?

14 November 2018 EMBEDDED-P-006 v1.44

▪ We have Generics and Traits (like interfaces)
– fn test<T>(thing: T) where T: Debug { … }

▪ We have heap allocation and type inference:
– let x = Box::new(thing);
– let r = Rc::new(thing);

▪ We have struct and enum and closures.
– struct Uart { … }
– enum Interupts { … }
– access(|r| { r.field() });

▪ We have collections:
let h: Hashmap<u32, Uart> = Hashmap::new();

▪ We have two libraries: std and core

Shortest Rust intro ever..

14 November 2018 EMBEDDED-P-006 v1.45

▪ Biggest member of the Beagleboard family

▪ Not a Beaglebone…

▪ Texas Instruments AM5728 SoC

▪ 2 GiB DDR3 @ 533 MHz

▪ 4 GiB eMMC

▪ 2x Gigabit Ethernet

▪ 1x eSATA

▪ 1x microSD

▪ 1x HDMI (1080p)

▪ Line In/Out

The Beagleboard X15

14 November 2018 EMBEDDED-P-006 v1.46

▪ Dual-core Cortex A15 MPU @ 1.5 GHz

▪ Dual-core SGX544 GPU @ 533 MHz

▪ 2x C66x DSPs @ 700 MHz

▪ 2x Dual-Core Cortex-M4 IPUs @ 213 MHz

▪ 2x Dual-Core 32-bit PRU-ICSS*

▪ Costs $50

* Programmable Real-Time Unit and Industrial

Communication Sub-System

AM5728

14 November 2018 EMBEDDED-P-006 v1.47

▪ Linux kernel feature

▪ Allows Linux to program, boot and control ‘remote processors’

▪ Controlled by the Device Tree

▪ RemoteProcs run ELF files:

– live in /lib/firmware

– must have a magic “.resource_table” section

– Special linker script

– Can run RTOS or bare-metal

▪ Memory is allocated from System RAM (Carveouts)

▪ Peripherals can be handed over (Device Memory)

▪ Shared text buffer for debug (Trace)

▪ Ring Buffers (VirtIO vrings)

RemoteProc

14 November 2018 EMBEDDED-P-006 v1.48

▪ The AM5728 is a “vayu” class SoC

– In the Sitara family but from the OMAP5 lineage

– Heavily related to (and often referred to as) the DRA7x automotive infotainment SoC family

▪ Kernel support (omap-remoteproc) in TI’s tree for loading IPU, PRU and DSP

▪ Example code in the TI SDK

– IPC examples for Linux and QNX MPU talking to TI-RTOS on the IPU/DSP

– Examples use TI’s Javascript based build system

– Serious quantities of autogenerated code, magic numbers and deep macro indirection

– Incredibly difficult to work out what’s going on:
– How do these processors talk to each other?

– How does the firmware get into RAM?

– What’s a vring?

– Who configures each of the three(?) MMUs?

– How does the IPU even boot?

Software Support

14 November 2018 EMBEDDED-P-006 v1.49

▪ Both cores boot from 0x0000_0000 at the same time.

▪ Which is which?

– Magic register which returns 0 on Core 0 and 1 on Core 1

– Not in the 8,500 page datasheet…

▪ Need to write ARM Assembler as we can’t use the stack pointer

– Both cores have the same stack pointer!

▪ Sleep the core we don’t want with wfi

▪ Configure the L1 AMMU

Booting the IPU

14 November 2018 EMBEDDED-P-006 v1.410

vecbase: .long 0 @ sp = not used

.long ti_sysbios_family_arm_ducati_Core_reset

core1sp: .long 0 @ Core 1 sp

core1vec:.long 0 @ Core 1 resetVec

ti_sysbios_family_arm_ducati_Core_reset:

ldr r0, coreid @ point to coreid reg

ldr r0, [r0] @ read coreid

cmp r0, #0

bne core1

core0:

...

core1:

...

coreid: .word 0xE00FFFE0

Boot Code

14 November 2018 EMBEDDED-P-006 v1.411

vecbase: .long 0 @ sp = not used

.long ti_sysbios_family_arm_ducati_Core_reset

core1sp: .long 0 @ Core 1 sp

core1vec:.long 0 @ Core 1 resetVec

ti_sysbios_family_arm_ducati_Core_reset:

ldr r0, coreid @ point to coreid reg

ldr r0, [r0] @ read coreid

cmp r0, #0

bne core1

core0:

...

core1:

...

coreid: .word 0xE00FFFE0

Boot Code

#[doc(hidden)]
#[link_section = ".vector_table.reset_vector"]
#[no_mangle]
pub static __RESET_VECTOR: unsafe extern "C" fn() -> ! = Reset;

#[no_mangle]
pub unsafe extern "C" fn Reset() -> ! {

const AM5728_IPU_PERIPHERAL_ID0: *const u32 =
0xE00FFFE0 as *const u32;

if read_volatile(AM5728_IPU_PERIPHERAL_ID0) != 0 {
loop {

asm!("wfi");
}

}
r0::zero_bss(&mut __sbss, &mut __ebss);
main();

}

14 November 2018 EMBEDDED-P-006 v1.412

Managing Memory Management Units

IPU1

C0 C1

L1 AMMU

L2 IOMMU

L3 BUS

MPU

C0 C1

MPU MMU

▪ Linux controls the MPU MMU and the IPUx L2 IOMMU.

– The IPU L2 IOMMU is configured using the resource table

▪ The IPU must configure its own L1 AMMU

– Also called the “Unicache MMU”

– Is also an L1 cache

– Has default mappings to allow boot code to run

– Mostly straight-through, but need to ensure addresses that

come in/out of the top of the IPU L2 IOMMU are mapped

to addresses the Cortex-M4 cores can access.

– Cortex-M4s have ‘bit-banding’ functionality on certain

address ranges, make use of them or avoid them.

▪ You can add 2x DSPs, IPU2, the 3D GPU, the 2D GPU, 2x

PCI-Express subsystems and 2x EDMA controllers to this

picture as they all have one or more MMUs…

PER

14 November 2018 EMBEDDED-P-006 v1.413

Resource Tables

▪ A series of structures in memory

▪ Array of offsets to each structure

▪ Common header for each resource

▪ Describes:

– Carve Outs

– Device Memory

– Trace Buffers

– VirtIO devices

#[link_section = ".resource_table"]
#[no_mangle]
#[repr(C)]
pub static RESOURCE_TABLE: ResourceTable = ResourceTable {

base: rt::Header { ver: 1, num: NUM_ENTRIES, reserved: [0, 0], },
offsets: [...],
rpmsg_vdev: rt::Vdev {

rtype: rt::ResourceType::VDEV,
id: vring::VIRTIO_ID_RPMSG,
notifyid: 0,
dfeatures: 1,
gfeatures: 0,
config_len: 0,
status: 0,
num_of_vrings: 2,
reserved: [0, 0],

},
rpmsg_vring0: rt::VdevVring {

da: 0x60000000,
align: 4096,
num: 256,
notifyid: 1,
reserved: 0,

},
...

};

14 November 2018 EMBEDDED-P-006 v1.414

▪ Address specified in resource table.

▪ Null-terminated text buffer – probably UTF-8.

▪ RemoteProc needs to append to this buffer

▪ If we run out of space … just erase everything and go back to the start

▪ Userland can obtain buffer with:

$ cat /sys/kernel/debug/remoteproc/remoteproc0/trace

▪ Generally just run:

$ watch tail –n 30 /sys/kernel/debug/remoteproc/remoteproc0/trace

Writing to the Trace Buffer

14 November 2018 EMBEDDED-P-006 v1.415

▪ Transliterating kernel structures into Rust

▪ Couldn’t find much documentation

– First used by hypervisors for paravirtualised device drivers

▪ https://www.ibm.com/developerworks/library/l-virtio/index.html

Reading/Writing VirtIO vrings

pub struct GuestVring {
descriptors: &'static mut DescriptorRing,
available: &'static mut AvailableRing,
used: &'static mut UsedRing,
entries: usize,
last_seen_available: u16,
addr_map: &'static Fn(u64) -> u64

}

#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct DescriptorEntry {

addr: u64,
len: u32,
pub flags: DescriptorFlags,
pub next: u16,

}

#[repr(C)]
pub struct AvailableRing {

pub flags: AvailableFlags
pub idx: u16,
pub ring: AvailableEntry,

}

#[repr(C)]
pub struct UsedRing {

pub flags: UsedFlags,
pub idx: u16,
pub ring: UsedEntry,

}

https://www.ibm.com/developerworks/library/l-virtio/index.html

14 November 2018 EMBEDDED-P-006 v1.416

▪ The Am5728 has 13 System Mailbox peripherals

▪ Each mailbox has:

– 3 or 4 ‘users’

– 8 or 12 individual FIFOs

– Up to 4 messages (each 32-bits) per FIFO

▪ Each FIFO should have one writing user and one reading user.

▪ Each user gets their own interrupts.

▪ Routing the interrupts is done through the Interrupt Crossbar.

▪ The documentation unhelpfully refers to a FIFO as a ‘mailbox’

▪ Allocation of Mailboxes to processor cores is deep magic.

Using the Mailbox

14 November 2018 EMBEDDED-P-006 v1.417

▪ Need to ensure the resource table goes into “.resource_table”

– This configures the IPU’s L2 IOMMU (but not the L1 AMMU)

▪ Vector table must be at 0x0000_0000, followed by code.

▪ Data lives at 0x8000_0000.

▪ Unclear if DDR or internal SRAM mapped to 0x0000_0000.

– Probably first 64 KiB is SRAM and rest is DDR?

▪ For compatibility with the toolchain we call the 0x0000_0000 segment “Flash” even though it’s just RAM.

▪ Don’t need to copy .data from Flash to RAM, do need to zero .bss

▪ Special section for IPC data – address also specified in resource table and in MMU config as un-cachable

▪ $ cargo build --release [--target=thumbv7em-none-eabi]

▪ $ scp ./target/thumbv7em-none-eabi/release/ipu-demo \
root@beagleboard:/lib/firmware/dra7-ipu1-fw.xem4

Making the Firmware

14 November 2018 EMBEDDED-P-006 v1.418

▪ RemoteProc is a protocol that uses VirtIO Vrings as a transport, and Mailboxes as a notification mechanism.

▪ In user-space, RemoteProc is access using a socket of type AF_RPMSG.

– RemoteProc messages have source and destination addresses.

– In your application you bind a socket to receive from the IPU, and connect a second to send to the IPU.

▪ The IPU informs Linux of its address on start-up using a well-known Name Server address (53).

▪ Each TX socket write becomes goes on the VirtIO Queue A available ring

▪ Each packet placed in the VirtIO Queue B used ring appears when RX socket when read.

Access from Linux user-space

14 November 2018 EMBEDDED-P-006 v1.419

https://github.com/cambridgeconsultants/rust-beagleboardx15-demo (coming soon...)

linux: user-space AF_RPMSG socket using code

bare-metal: Rust code for IPU1_Core0 (contains a fork of cortex-m-rt)

Use the source, Luke!

https://github.com/cambridgeconsultants/rust-beagleboardx15-demo

14 November 2018 EMBEDDED-P-006 v1.420

• https://keybase.io/thejpster

• https://github.com/rust-embedded and @rustembedded on Twitter.

• @thejpster in #rust-embedded on Mozilla IRC

• We have jobs! See cambridgeconsultants.com/careers

Get in touch:

https://keybase.io/thejpster
https://github.com/rust-embedded
cambridgeconsultants.com/careers

14 November 2018 EMBEDDED-P-006 v1.4

UK

Cambridge Consultants is part of the Altran group, a global leader

in Innovation. www.Altran.com

www.CambridgeConsultants.com

USA SINGAPORE JAPAN. . .

Registered no. 01036298 England and Wales

