
Meeting C++ 2018 | @stoyannk

Data-oriented design in practice
Stoyan Nikolov

@stoyannk

Meeting C++ 2018 | @stoyannk

Who am I?

● In the video games industry for 10+ years
● Software Architect at Coherent Labs
● Working on game development technology
● Last 6.5 years working on

○ chromium
○ WebKit
○ Hummingbird - in-house game UI & browser engine

● High-performance maintainable C++

Games using Coherent Labs technology
Images courtesy of Rare Ltd., PUBG Corporation

2

http://coherent-labs.com

Meeting C++ 2018 | @stoyannk

DEMO video of performance on Android

3

Meeting C++ 2018 | @stoyannk

Agenda

● Basic issue with Object-oriented programming (OOP)
● Basics of Data-oriented design (DoD)
● Problem definition
● Object-oriented programming approach
● Data-oriented design approach
● Results & Analysis

4

Meeting C++ 2018 | @stoyannk

OOP marries data with operations...

● ...it’s not a happy marriage
● Heterogeneous data is brought together by a “logical” black box object
● The object is used in vastly different contexts
● Hides state all over the place
● Impact on

○ Performance
○ Scalability
○ Modifiability
○ Testability

● YMMV but a lot of code-bases (even very successful) do - how do we fix it?

5

Meeting C++ 2018 | @stoyannk

Data-oriented design
Data A
Field A[]
Field B[]
Field C[]

Data B
Field D[]
Field E[]
Field F[]

System α

System β

System γ

Data C
Field G[]

Data D
Field H[]

Logical Entity 0

Field A[0] Field D[0]

Field B[0] Field E[0]

Field C[0] Field F[0]

Logical Entity 1

Field A[1] Field D[1]

Field B[1] Field E[1]

Field C[1] Field F[1]

...

6
OOP data layout

DoD layout

Meeting C++ 2018 | @stoyannk

Data-oriented design

● Separates data from logic
○ Structs and functions live independent lives
○ Data is regarded as information that has to be transformed

● Build for a specific machine
○ Improve cache utilization

● Reorganizes data according to it’s usage
○ The logic embraces the data
○ Does not try to hide it
○ Leads to functions that work on arrays
○ If we aren’t going to use a piece of information, why pack it together?
○ Avoids “hidden state”

● Promotes deep domain knowledge
● References at the end for more detail

7

Meeting C++ 2018 | @stoyannk

Data-oriented design & OOP

● “Good” OOP shares a lot of traits with data-oriented design
○ But “good” OOP is hard to find

● Thinking in a data-oriented framework will improve your OOP code as well!

8

Mature programmers know that the idea that everything is an object is a myth. Sometimes
you really do want simple data structures with procedures operating on them.

Robert C. Martin

Meeting C++ 2018 | @stoyannk

Data-oriented design has been mostly
demonstrated in video games..

9

Meeting C++ 2018 | @stoyannk

Let’s apply data-oriented design to something
that is not a game..

10

Meeting C++ 2018 | @stoyannk

The system at hand

11

Meeting C++ 2018 | @stoyannk

What is a CSS Animation?

DEMO

12

Meeting C++ 2018 | @stoyannk

Animation definition
@keyframes example {

 from {left: 0px;}

 to {left: 100px;}

}

div {

width: 100px;

height: 100px;

background-color: red;

 animation-name: example;

animation-duration: 1s;

}

● Straightforward declaration
○ Interpolate some properties over a period of time
○ Apply the Animated property on the right Elements

● However at a second glance..
○ Different property types (i.e. a number and a color)
○ There is a DOM API (JavaScript) that requires the

existence of some classes (Animation,
KeyframeEffect etc.)

13

Meeting C++ 2018 | @stoyannk

Let’s try OOP

14

Meeting C++ 2018 | @stoyannk

The OOP way (chromium 66)

● chromium has 2 Animation systems
○ We’ll be looking at the Blink system

● Employs some classic although “old school” OOP
○ Closely follows the HTML5 standard and IDL
○ Running Animation are separate objects

● Study chromium - it’s an amazing piece of software, a lot to learn!

15

Meeting C++ 2018 | @stoyannk

What is so wrong with this?

16

Meeting C++ 2018 | @stoyannk

The flow

● Unclear lifetime semantics

17

Meeting C++ 2018 | @stoyannk

The state

● Hidden state
● Branch mispredictions

18

Meeting C++ 2018 | @stoyannk

The KeyframeEffect

● Cache misses
19

Meeting C++ 2018 | @stoyannk

Updating time and values

● Jumping contexts
● Cache misses (data and instruction)
● Coupling between systems (animations and events)

20

Meeting C++ 2018 | @stoyannk

Interpolate different types of values

● Dynamic type erasure - data and instruction cache misses
● Requires testing combinations of concrete classes

21

Meeting C++ 2018 | @stoyannk

Apply the new value
● Coupling systems - Animations and Style solving
● Unclear lifetime - who “owns” the Element
● Guaranteed cache misses

Walks up the DOM tree!

22

Meeting C++ 2018 | @stoyannk

SetNeedsStyleRecalc

SetNeedsStyleRecalc

Miss!

Miss!

Miss!

Miss!

23

Meeting C++ 2018 | @stoyannk

Recap

● We used more than 6 non-trivial classes
● Objects contain smart pointers to other objects
● Interpolation uses abstract classes to handle different property types
● CSS Animations directly reach out to other systems - coupling

○ Calling events
○ Setting the value in the DOM Element
○ How is the lifetime of Elements synchronized?

24

Meeting C++ 2018 | @stoyannk

Let’s try data-oriented design

25

Meeting C++ 2018 | @stoyannk

Back to the drawing board

● Animation data operations
○ Tick (Update) -> 99.9%
○ Add
○ Remove
○ Pause
○ …

● Animation Tick Input
○ Animation definition
○ Time

● Animation Tick Output
○ Changed properties
○ New property values
○ Who owns the new values

● Design for many animations
26

Meeting C++ 2018 | @stoyannk

The AnimationController

AnimationController

Active Animations
AnimationState

AnimationState

AnimationState

Inactive Animations

AnimationState

AnimationState

Tick(time)

Animation Output

Left: 50px
Opacity: 0.2

Left: 70px
Right: 50px

Top: 70px

Elements

Element*

Element*

Element*
27

Meeting C++ 2018 | @stoyannk

Go flat!

28

Runtime

Definition

Meeting C++ 2018 | @stoyannk

Two approaches to keep the definition

29

Animation State

Animation State

Animation State

Animation State

Animation State

Animation Definition

Animation Definition

Animation State Animation Definition

Animation State Animation Definition

Animation State Animation Definition

Animation State Animation Definition

Animation State Animation Definition

Shared pointers & Copy-on-write Multiplicated data - no sharing

Meeting C++ 2018 | @stoyannk

Avoid type erasure

Per-property vector for every Animation type!

Note: We know every needed type at compile time, the vector declarations are auto-generated

30

Meeting C++ 2018 | @stoyannk

Memory layout comparison

31

Animation

Animation

Interpolation

Animation

Interpolation

Interpolation

AnimationState<BorderLeft> AnimationState<BorderLeft> AnimationState<BorderLeft>

AnimationState<Opacity> AnimationState<Opacity>

AnimationState<Transform> AnimationState<Transform> AnimationState<Transform>

Heap Heap

Meeting C++ 2018 | @stoyannk

Ticking animations
● Iterate over all vectors

● Use implementation-level templates (in the .cpp file)

AnimationState<BorderLeft> AnimationState<BorderLeft> AnimationState<BorderLeft> AnimationState<BorderLeft>

AnimationState<Opacity> AnimationState<Opacity> AnimationState<Opacity>

AnimationState<Transform> AnimationState<Transform>

32

Meeting C++ 2018 | @stoyannk

Avoiding branches

● Keep lists per-boolean “flag”
○ Similar to database tables - sometimes called that way in DoD literature

● Separate Active and Inactive animations
○ Active are currently running

■ But can be stopped from API
○ Inactive are finished

■ But can start from API

● Avoid “if (isActive)” !
● Tough to do for every bool, prioritize according to branch predictor chance

33

Meeting C++ 2018 | @stoyannk

A little bit of code

34

Meeting C++ 2018 | @stoyannk

Adding an API - Controlling Animations

● The API requires having an “Animation” object
○ play()
○ pause()
○ playbackRate()

● But we have no “Animation” object?!
● An Animation is simply a handle to a bunch of data!
● AnimationId (unsigned int) wrapped in a JS-accessible C++ object

Animation

- Play()
- Pause()
- Stop()
- …

AnimationId Id;

JS API

AnimationController

- Play(Id)
- Pause(Id)
- Stop(Id)
- …

35

Meeting C++ 2018 | @stoyannk

Implementing the DOM API cont.

● AnimationController implements all the data modifications
● “Animation” uses the AnimationId as a simple handle

36

Meeting C++ 2018 | @stoyannk

Analogous concepts comparison

OOP (chromium) DoD (Hummingbird)

blink::Animation inheriting 6 classes AnimationState templated struct

References to Keyframe data Read-only duplicates of the Keyframe data

List of dynamically allocated Interpolations Vectors per-property

Boolean flags for “activeness” Different tables (vectors) according to flag

Inherit blink::ActiveScriptWrappable Animation interface with Id handle

Output new property value to Element Output to tables of new values

Mark Element hierarchy (DOM sub-trees) for styling List of modified Elements

37

Meeting C++ 2018 | @stoyannk

Key points

● Keep data flat
○ Maximise cache usage
○ No RTTI
○ Amortized dynamic allocations
○ Some read-only duplication improves performance and readability

● Existence-based predication
○ Reduce branching
○ Apply the same operation on a whole table

● Id-based handles
○ No pointers
○ Allow us to rearrange internal memory

● Table-based output
○ No external dependencies
○ Easy to reason about the flow 38

Meeting C++ 2018 | @stoyannk

What about something more complex - style
solving?

39

Meeting C++ 2018 | @stoyannk

Style solving

● Doesn’t map well to the “by the book” data-oriented design idea
● Traverse a tree of potentially large objects
● Complex rules to apply for each style type

40

Node

Specificity(0 0 0 1)
left: 2em;

opacity: 0.5;
Specificity(0 0 1 1)

left: 10px;
color: inherit;

Animation
left: 50px;

Node

Computed
left: 50px;

opacity: 0.5;
color: orange;

...

Meeting C++ 2018 | @stoyannk

The DOM tree styling walk

● Styling of children can depend on parents due to inheritance of styles
● Classic top-down algorithm

○ If Node or its children have something changed - re-style
○ Walk children
○ Node & Elements have different rules. Nodes (Text usually) take directly the style of their parent

41

Node

Element

Inheritance

Element

Element Element

Element Node

Meeting C++ 2018 | @stoyannk

Issues with top-down algorithm

● Requires marking Node/Element parents when their children have changed styles
○ Saw this in chromium

● Requires walking a tree of heap-allocated large objects
○ Nodes and Elements have interface requirements and usually have a lot of data

● Nodes and Elements (inherit Node) implement different styling logic
● There are hundreds of styles

○ We would like to compute only what is changed

42

Meeting C++ 2018 | @stoyannk

Data-oriented design approach

● Input
○ List of Nodes with potentially changed styling
○ Bitset for each Node of potentially changed styles

● Split the algorithm in 3 phases
○ Gather children and sort by DOM level

■ We have to keep the order of elements - remember children can depend on parent style
■ Separate Element and Node objects

○ Compute styles on the sorted list of Elements
■ Nodes can be directly iterated at the end - they are always leaves in the tree

○ Compute final output
■ Shown/Hidden nodes
■ Nodes with new styles
■ etc.

43

Meeting C++ 2018 | @stoyannk

Phase 1 - Gather children and sort

● Input
○ List of Nodes

● Additional data needed
○ IsElement
○ Children
○ DOM level

● Output
○ Sorted list of Elements
○ List of Nodes

44

N* N* N*

N* N* N* N*

E* 0 E* 1 E* 2 E* 2 E* 3

for each Node in Input:
 Push Node in Queue
 while !Queue.empty():
 if Node !IsElement(Node):
 Put in NodesOutput;
 else
 Put in ElementOutput;
 Push Children in Queue;
Sort ElementOutput By DOM Level;

Meeting C++ 2018 | @stoyannk

Phase 2 - Compute styles for Elements and Nodes

● Input
○ List of Elements sorted by DOM Level
○ List of Nodes

● Additional data needed
○ Potentially changed styles
○ List of matched styles for each
○ Type classification of styles (transform, layout etc.)

● Output
○ Modified computed styles
○ Elements with changed style and type of change
○ Nodes with changed style and type of change

45

E* 0 E* 1 E* 2 E* 2 E* 3

N* N* N* N*

Element*

Computed
...

Element*

Computed
...

Change
Type

...

Change
Type

...

Node*

Computed
...

Change
Type

...

Meeting C++ 2018 | @stoyannk

Phase 3 - Classify changes for next steps in pipeline

● Input
○ List of changed Nodes & Elements
○ Type of change class for each

● Additional data needed
○ None

● Output
○ Classified lists

■ Nodes/Elements with changed Layout styles
■ Nodes/Elements with changed Transform styles
■ Nodes/Elements shown/hidden
■ etc.

46

Element* Element*

Change
Type

...

Change
Type

...

Node*

Change
Type

...

E* E*

E*

E* N*

Meeting C++ 2018 | @stoyannk

Each phase uses different data

● Different Input/Output
● Different additional needed data
● In classic OOP DOM all the data will be in Node/Element

○ With a bunch of stuff unused by our algorithm!
○ Low cache occupancy

● Idea -> Split the Node/Element in Components
○ A version of Entity-Component System (ECS)
○ We don’t need dynamically adding/removing components!
○ Maximise cache occupancy in each phase

47

Meeting C++ 2018 | @stoyannk

Nodes with Components

48

Node

- Parent*
- Children[]
- DomLevel
- ChangedStyles*
- ComputedStyles*
- ID
- Classes
- MatchedStyles*

...

Node

Hierarchy
- Parent*
- Children[]
- DomLevel

Styling
- ChangedStyles*
- ComputedStyles*

Style Matching
- ID
- Classes
- MatchedStyles*

...

OOP DoD

Used in Phase 1

Used in Phase 2

Used in Style
matching (not in
this talk)

Meeting C++ 2018 | @stoyannk

Analysis

49

Meeting C++ 2018 | @stoyannk

Performance analysis

OOP DoD

Animation Tick time average* 6.833 ms 1.116 ms

DoD Animations are 6.12x faster

50

* Data gathered on PC, Intel i7

Meeting C++ 2018 | @stoyannk

Scalability

● Issues multithreading OOP chromium Animations
○ Collections getting modified during iteration
○ Event delegates
○ Marking Nodes for re-style

● Solutions for the OOP case
○ Carefully re-work each data dependency

● Issues multithreading DoD Animations
○ Moving AnimationStates to “inactive” (table modification from multiple threads)
○ Building list of modified Nodes (vector push_back across multiple threads)

● Solutions in the DoD case
○ Each task/job/thread keeps a private table of modified nodes & new inactive anims
○ Join merges the tables
○ Classic fork-join

51

Meeting C++ 2018 | @stoyannk

Multithreaded animation system

52

AnimationState

AnimationState

AnimationState

AnimationState

AnimationState

AnimationState

AnimationState

AnimationState

AnimationState

Thread A
Tick Animations

[0..N/3)

Thread B
Tick Animations

[N/3..2N/3)

Thread C
Tick Animations

[2N/3..N)

Output A

Output B

Output C

Output

Meeting C++ 2018 | @stoyannk

● The OOP case
○ Needs mocking the main input - animation definitions
○ Needs mocking at least a dozen classes
○ Needs building a complete mock DOM tree - to test the “needs re-style from animation logic”
○ Combinatorial explosion of internal state and code-paths
○ Asserting correct state is difficult - multiple output points

● The DoD case
○ Needs mocking the input - animation definitions
○ Needs mocking a list of Nodes, complete DOM tree is not needed
○ AnimationController is self-contained
○ Asserting correct state is easy - walk over the output tables and check

Testability analysis

53

Meeting C++ 2018 | @stoyannk

Modifiability analysis

● OOP
○ Very tough to change base classes

■ Very hard to reason about the consequences
○ Data tends to “harden”

■ Hassle to move fields around becomes too big
■ Nonoptimal data layouts stick around

○ Shared object lifetime management issues
■ Hidden and often fragile order of destruction

○ Easy to do “quick” changes

● DoD
○ Change input/output -> requires change in System “before”/”after” in pipeline
○ Implementation changes - local

■ Can experiment with data layout
■ Handles mitigate potential lifetime issues

54

Meeting C++ 2018 | @stoyannk

Downsides of DoD

● Correct data separation can be hard
○ Especially before you know the problem very well

● Existence-based predication is not always feasible (or easy)
○ Think adding a bool to a class VS moving data across arrays
○ Too many booleans is a symptom - think again about the problem

● “Quick” modifications can be tough
○ OOP allows to “just add” a member, accessor, call
○ More discipline is needed to keep the benefits of DoD

● You might have to unlearn a thing or two
○ The beginning is tough

● The language is not always your friend

55

Meeting C++ 2018 | @stoyannk

When OOP?

● Sometimes we have no choice
○ Third-party libraries
○ IDL requirements

● Simple structs with simple methods are perfectly fine
● Polymorphism & Interfaces have to be kept under control

○ Client-facing APIs
○ Component high-level interface
○ IMO more convenient than C function pointer structs

● Remember - C++ has great facilities for static polymorphism
○ Can be done through templates
○ .. or simply include the right “impl” according to platform/build options

56

Meeting C++ 2018 | @stoyannk

Object-oriented programming is not a silver bullet..

57

..neither is data-oriented design..

..use your best judgement, please.

Meeting C++ 2018 | @stoyannk

References

● “Data-Oriented Design and C++”, Mike Acton, CppCon 2014
● “Pitfalls of Object Oriented Programming”, Tony Albrecht
● “Introduction to Data-Oriented Design”, Daniel Collin
● “Data-Oriented Design”, Richard Fabian
● “Data-Oriented Design (Or Why You Might Be Shooting Yourself in The Foot With OOP)”,

Noel Llopis
● “OOP != classes, but may == DOD”, roathe.com
● “Data Oriented Design Resources”, Daniele Bartolini
● https://stoyannk.wordpress.com/

58

https://www.youtube.com/watch?v=rX0ItVEVjHc
https://www.slideshare.net/EmanWebDev/pitfalls-of-object-oriented-programminggcap09
https://www.dice.se/wp-content/uploads/2014/12/Introduction_to_Data-Oriented_Design.pdf
http://www.dataorienteddesign.com/dodmain/dodmain.html
http://gamesfromwithin.com/data-oriented-design
https://roathe.wordpress.com/2010/03/22/oop-classes-but-may-dod/
https://github.com/dbartolini/data-oriented-design
https://stoyannk.wordpress.com/

