
The Speed Game:
Automated Trading in C++

Carl Cook, Ph.D.

Contents

● How fast is fast
● The role of C++ in automated trading systems
● Low latency C++ coding techniques
● Downsides of C++
● SG14

About me
● Ph.D. in software engineering

○ Static code analysis/semantic modelling of code

● M.Sc. in computer science
○ Programmable/active networks

● 10+ years of commercial software development
○ All within the finance industry - focussed on order execution

● Member of SG14 (with proposals to WG21)
○ Representing the trading community

● Currently work at Optiver (an electronic market maker)
○ I work on order execution, risk systems, performance, ...

D
is

cl
ai

m
er This isn’t a talk about general optimization

For that, please see talks by:

● Andrei Alexandrescu
● Mike Acton

This is a talk about squeezing latency out of your code

I’ve also removed any overlap from other presentations

Motivating example: Spending money for a weekend in London

USD-GBP 0.82/1.22EUR-USD 1.1/0.9

EUR-GBP 0.9/1.1

1.0 * 1.1 * 0.82 = 0.9
(no arbitrage opportunity)

1.0 * 1.2 * 0.82 = 0.98
Arbitrage opportunity: convert to USD1.2, convert that to GBP0.98, convert that back to EUR1.10

Generally, markets are efficient, where participants will quickly bring prices back into line

1/30

The fastest wins

and it doesn’t matter by how much

2/30

How fast is fast?
From:
 Receiving the exchange’s market data,
 to spotting the opportunity,
 to performing risk checks,
 to sending the buy/sell message back to
 the exchange

An all software approach: 1-10us
An all hardware approach: 100-1000ns
(Hybrid approaches are also possible)

3/30

How fast is fast?
From:
 Receiving the exchange’s market data,
 to spotting the opportunity,
 to performing risk checks,
 to sending the buy/sell message back to
 the exchange

An all software approach: 1-10us
An all hardware approach: 100-1000ns
(Hybrid approaches are also possible)

Distance of light in 1us

3/30

Characteristics of automated trading systems
● Only a few lines of code in the entire system are important (buy/sell)
● These lines are not exercised often (relative to say graphics rendering)
● Lots of market data events (millions of events per second)
● Jitter is a killer (delays in reaction time can be very costly)
● Very little threading/instruction vectorisation/etc

○ Remember - latency not throughput

● No mistakes (and very good recovery from mistakes)
○ One second is 4 billion CPU instructions

○ Companies have gone bankrupt through system error before, and markets/investors have also
been impacted

○ A highly regulated and highly visible industry

4/30

The role of C++ in trading systems

5/30

The role of C++ in trading systems

Network

5/30

The role of C++ in trading systems

Network

5/30

The role of C++ in trading systems

Network

5/30

The role of C++ in trading systems

Server hardware

Network

5/30

The role of C++ in trading systems

Server hardware

Network

5/30

The role of C++ in trading systems

Server hardware

Network

5/30

The role of C++ in trading systems

Kernel tuning

Server hardware

Network

5/30

The role of C++ in trading systems

C++

Kernel tuning

Server hardware

Network

5/30

The role of C++ in trading systems

Algos

C++

Kernel tuning

Server hardware

Network

5/30

The role of C++ in trading systems

Algos

C++

Kernel tuning

Server hardware

Network

Not secret or complicated; in
every trading textbook

5/30

The role of C++ in trading systems

Algos

C++

Kernel tuning

Server hardware

Network

Today’s talk

5/30

The role of C++ in trading systems

Algos

C++

Kernel tuning

Server hardware

Network

Interesting, but more
about system

programming &
architecture than C++,

talk with me afterwards!

5/30

The role of C++ in trading systems

Algos

C++

Kernel tuning

Server hardware

Network

Keep in mind: this stack
was designed to be fair

to all users, focussing on
throughput

5/30

The effect of kernel tuning

Computation: Black-Scholes options pricing (CPU intensive, minimal data access)
6/30

Smartness
● Problem transformation to faster forms
● Then, move decisions from runtime to compile time
● Sometimes, heuristics are acceptable (price interpolation, some flexibility on limits, etc)

Implementation
● The simpler the code, the faster it is likely to be
● Don’t under-estimate optimising compilers, or try to be the optimising compiler
● Know the language, and become very familiar with the STL (algorithm selection)
● Know your hardware!
● Bypass the kernel - aim for 100% userspace code (C/C++), including any network IO
● Measure, measure, measure

Specifics
● Read the resultant assembly
● Cache warming helps (instruction and data cache misses are a large cost)

Lo
w

 la
te

nc
y

C
++

7/30

Remember: bypass the operating system!

7/30

C++ low latency
coding

techniques

● General considerations
● Compile-time dispatch
● Constexpr
● Variadic templates
● Loop unrolling
● Expression short-circuiting
● Signed vs unsigned comparisons
● Mixing float and doubles
● Branch prediction/reduction
● Exceptions
● Slowpath removal
● Avoiding allocations
● Fast containers
● Lambda functions

8/30

C++ low latency
coding

techniques

● General considerations
● Compile-time dispatch
● Constexpr
● Variadic templates
● Loop unrolling
● Expression short-circuiting
● Signed vs unsigned comparisons
● Mixing float and doubles
● Branch prediction/reduction
● Exceptions
● Slowpath removal
● Avoiding allocations
● Fast containers
● Lambda functions

9/30

Without repeating examples from other MeetingCpp talks this year:

● Move semantics
● Static assert
● Data member layout, padding and alignment
● False sharing
● Cache locality

9/30

C++ low latency
coding

techniques

● General considerations
● Compile-time dispatch
● Constexpr
● Variadic templates
● Loop unrolling
● Expression short-circuiting
● Signed vs unsigned comparisons
● Mixing float and doubles
● Branch prediction/reduction
● Exceptions
● Slowpath removal
● Avoiding allocations
● Fast containers
● Lambda functions

10/30

An old C vs C++ example, but very significant on modern hardware

 constexpr N = 10000;
 int array[N];

 std::sort(array, array + N, [](int a, int b) { return b < a; });

 71us, std deviation 1.5us

 int comparer(const void* a, const void* b) { return *(int*)a - *(int*)b; }
 qsort(arr, N, sizeof(int), comparer);

 223us, std deviation 7us

10/30

By the way, google-benchmark is great

10/30

https://opensource.googleblog.com/2014/01/introducing-benchmark.html

By the way, google-benchmark is great

More about measurement later on...

10/30

https://opensource.googleblog.com/2014/01/introducing-benchmark.html

C++ low latency
coding

techniques

● General considerations
● Compile-time dispatch
● Constexpr
● Variadic templates
● Loop unrolling
● Expression short-circuiting
● Signed vs unsigned comparisons
● Mixing float and doubles
● Branch prediction/reduction
● Exceptions
● Slowpath removal
● Avoiding allocations
● Fast containers
● Lambda functions

11/30

Another case of trying to do as much at compile time as possible
● Yields faster compile times than templates

11/30

Another case of trying to do as much at compile time as possible
● Yields faster compile times than templates

Poor implementation,
but does it matter?

11/30

C++ low latency
coding

techniques

● General considerations
● Compile-time dispatch
● Constexpr
● Variadic templates
● Loop unrolling
● Expression short-circuiting
● Signed vs unsigned comparisons
● Mixing float and doubles
● Branch prediction/reduction
● Exceptions
● Slowpath removal
● Avoiding allocations
● Fast containers
● Lambda functions

12/30

Motivating example: fast, typesafe and simple logging:

int main(int argc, char* args[]) {
 LOG("Hello myInt=% myChar=% myDouble=%", 1, ‘a’, 42.3);
}

$./logger
$ myInt=1 myChar=a myDouble=42.3

Disassembly (of hotpath):

movl $1, writeBuffer(%rip)

movb $97, writeBuffer+4(%rip)

movq %rax, writeBuffer+5(%rip)

12/30

The general idea:

● Do argument checking at compile time
● Also at compile time, define types that know how to:

○ Serialise the argument data
○ Deserialise/format the arguments given the serialised data

● In the hotpath, just serialise the data

 LOG("Hello myInt=% myChar=% myDouble=%", 1, ‘a’, 42.3);

 1 ‘a’ 42.3

not like most examples you see on the internet. Here we have two classes... one to write to a binary data stream, the other to read from it and
format it (can be slow). Can be done in a second thread, or at a quiet time

1 0 0 0 97 102 102 102 102 102 38 69 64

12/30

// API
#define LOG(formatString, ...) \
 static_assert(CountPlaceholders(formatString) == sizeof_args(__VA_ARGS__), \
 "Number of arguments mismatch"); \
 WriteLog(formatString, ##__VA_ARGS__);

// Useful helper functions
constexpr size_t CountPlaceholders(const char* formatString) {
 size_t result {0};
 while (formatString[0] != '\0') {
 result += (formatString[0] == '%') ? 1u : 0u;
 formatString++;
 }
 return result;
}

template <typename... Types>
constexpr unsigned sizeof_args(Types&&...) {
 return sizeof...(Types);
}

12/30

template <typename... Args>
static void WriteLog(const char* formatString, const Args&... args) {
 // calculate space needed in buffer, then get the buffer, then store the format
 // string, and pointer to static object that knows how to format these arguments
 char* argsBuffer = /* minor details */

 // copy args in the buffer
 CopyArgs(argsBuffer, args...);
}

// write a single arg to the buffer and continue with the tail
template<typename Arg, typename ... Args>
static char* CopyArgs(char* argsData, const Arg& arg, const Args&... args) {
 argsData = CopyArg(argsData, arg);
 return CopyArgs(argsData, args...);
}

// base case (terminator)
inline char* CopyArgs(char* argsData) { return argsData; }

12/30

// specialisation of CopyArg for trivially copyable types
template <typename T>
static char* CopyArg(char* argsData, T arg) {
 static_assert(std::is_trivially_copyable<T>::value, "trivially-copyable types only");
 reinterpret_cast<T>(argsData) = arg;
 return argsData + sizeof(arg);
}

Key point: all of this code gets inlined into simple mov statements, with non-trivial
types only slightly more expensive

Have a look at the following repositories for working examples:
● https://github.com/maciekgajewski/Fast-Log
● https://github.com/carlcook/variadicLogging

12/30

https://github.com/maciekgajewski/Fast-Log
https://github.com/maciekgajewski/Fast-Log
https://github.com/carlcook/variadicLogging
https://github.com/carlcook/variadicLogging

● General considerations
● Compile-time dispatch
● Constexpr
● Variadic templates
● Loop unrolling
● Expression short-circuiting
● Signed vs unsigned comparisons
● Mixing float and doubles
● Branch prediction/reduction
● Exceptions
● Slowpath removal
● Avoiding allocations
● Fast containers
● Lambda functions

C++ low latency
coding

techniques

13/30

Generally, don’t bother, the compiler will figure it out
● In fact, some compilers ask you to not manually unroll

13/30

https://software.intel.com/en-us/articles/avoid-manual-loop-unrolling

C++ low latency
coding

techniques

● General considerations
● Compile-time dispatch
● Constexpr
● Variadic templates
● Loop unrolling
● Expression short-circuiting
● Signed vs unsigned comparisons
● Mixing float and doubles
● Branch prediction/reduction
● Exceptions
● Slowpath removal
● Avoiding allocations
● Fast containers
● Lambda functions

14/30

Try to short circuit wherever possible

● Rewrite:
 if (expensiveCheck() && inexpensiveCheck()) {}

● As:
 if (inexpensiveCheck() && expensiveCheck()) {}

I know I just said not to try to beat the optimizer… but compilers can’t reorder
statements where they are not sure of what the side effects are of doing so

14/30

C++ low latency
coding

techniques

● General considerations
● Compile-time dispatch
● Constexpr
● Variadic templates
● Loop unrolling
● Expression short-circuiting
● Signed vs unsigned comparisons
● Mixing float and doubles
● Branch prediction/reduction
● Exceptions
● Slowpath removal
● Avoiding allocations
● Fast containers
● Lambda functions

15/30

Key points:

1. There is no such thing as overflow for signed integers in C++
○ Writing a program that overflows is Undefined Behaviour

2. Unsigned integers in C++ must wrap (which can have a cost)
○ I.e. it is not Undefined Behaviour

15/30

Credit for example: http://www.airs.com/blog/archives/120

15/30

15/30

15/30

C++ low latency
coding

techniques

● General considerations
● Compile-time dispatch
● Constexpr
● Variadic templates
● Loop unrolling
● Expression short-circuiting
● Signed vs unsigned comparisons
● Mixing float and doubles
● Branch prediction/reduction
● Exceptions
● Slowpath removal
● Avoiding allocations
● Fast containers
● Lambda functions

16/30

Mixing floats and double can have a minor runtime cost:

● http://www.agner.org/optimize/optimizing_cpp.pdf

int main() {

 float a, b = rand();

 a = b * 1.23;

 return a;

}

16/30

http://www.agner.org/optimize/optimizing_cpp.pdf
http://www.agner.org/optimize/optimizing_cpp.pdf

Mixing floats and double can have a minor runtime cost

● http://www.agner.org/optimize/optimizing_cpp.pdf

int main() {

 float a, b = rand();

 a = b * 1.23;

 return a;

}

Default type of a floating point literal in C++ is double, not float
● Watch out for conversions
● Side note: If you are brave, consider -ffast-math

16/30

http://www.agner.org/optimize/optimizing_cpp.pdf
http://www.agner.org/optimize/optimizing_cpp.pdf

C++ low latency
coding

techniques

● General considerations
● Compile-time dispatch
● Constexpr
● Variadic templates
● Loop unrolling
● Expression short-circuiting
● Signed vs unsigned comparisons
● Mixing float and doubles
● Branch prediction/reduction
● Exceptions
● Slowpath removal
● Avoiding allocations
● Fast containers
● Lambda functions

17/30

● Compile-time branch prediction hints are a topic of much discussion
(particularly within SG14)
○ I.e. gcc’s __builtin_expect

● Remember, the hardware branch predictor is extremely good
○ This will (should) dominate any compiler reordering of branches

● Some exceptions to the rule:
○ A function that isn’t called often, but when it is, it needs to be fast
○ Data/code layout might be better with compiler hints

● Branch prediction hints are definitely a quick win
○ But returns may diminish as you start to manually tune your code

17/30

Avoid this:

 if (checkForErrorA())
 handleErrorA();
 else if (checkForErrorB())
 handleErrorB();
 else if (checkForErrorC())
 handleErrorC();
 else
 executeHotpath();

Aim for this:

 uint32_t errorFlags;
 ...
 if (errorFlags)
 HandleError(errorFlags)
 else
 {
 ... hotpath
 }

● I.e. handle/prepare for errors when they happen, not in the hotpath
● Also consider tearing down entire control path upon error

○ This means the control path does less error checking itself

17/30

C++ low latency
coding

techniques

● General considerations
● Compile-time dispatch
● Constexpr
● Variadic templates
● Loop unrolling
● Expression short-circuiting
● Signed vs unsigned comparisons
● Mixing float and doubles
● Branch prediction/reduction
● Exceptions
● Slowpath removal
● Avoiding allocations
● Fast containers
● Lambda functions

18/30

Trying is cheap, catching is expensive*
*assuming a table-driven approach, as supported by llvm/gcc

● Unthrown exceptions don’t appear to have a measurable cost
○ Disclaimer: for server applications (not necessarily other domains)

● For the non-exceptional flow, it’s just evaluating a conditional jump
● The branch predictor is going guess correctly

● I’ve timed this with multiple autotrading applications compiled with
exception handling disabled
○ No speedup (in fact, quite a fast form of error handling)

● Admittedly, it’s hard to measure this, as there is an Observer Effect
■ By disabling exceptions you are altering the codepath

18/30

http://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf

C++ low latency
coding

techniques

● General considerations
● Compile-time dispatch
● Constexpr
● Variadic templates
● Loop unrolling
● Expression short-circuiting
● Signed vs unsigned comparisons
● Mixing float and doubles
● Branch prediction/reduction
● Exceptions
● Slowpath removal
● Avoiding allocations
● Fast containers
● Lambda functions

19/30

if (okay) {

 ...

 hotpath

}

else {

 sendToClient(“Order failed”);

 removeFromMap(orderId);

 logMessage(“Order failed”);

 ...

}

if (okay) {

 ...

 hotpath

}

else {

 HandleError();

}

Code is data - keep it minimal, and keep the slowpath code away from the hotpath

19/30

● Keep functions that are used together close to each other
● Keep data that are used together close to each other
● Don’t declare slowpath functions as inline. In fact, consider using:

 void __attribute__ ((noinline)) myUnimportantFunction()

 {

 ...

 }

19/30

C++ low latency
coding

techniques

● General considerations
● Compile-time dispatch
● Constexpr
● Variadic templates
● Loop unrolling
● Expression short-circuiting
● Signed vs unsigned comparisons
● Mixing float and doubles
● Branch prediction/reduction
● Exceptions
● Slowpath removal
● Avoiding allocations
● Fast containers
● Lambda functions

20/30

new and delete have an associated cost
● That cost is variable, but can be several microseconds

○ It can involve a system call (and page faults and TLB misses)
● Multithreaded applications also incur overhead in terms of allocations

Allocate ahead of time, hold onto memory forever (placement new)
● This also helps keeps related data together
● This also helps avoid long term fragmentation

Tip: don’t use swap. Memory is cheap. Buy more!

20/30

C++ low latency
coding

techniques

● General considerations
● Compile-time dispatch
● Constexpr
● Variadic templates
● Loop unrolling
● Expression short-circuiting
● Signed vs unsigned comparisons
● Mixing float and doubles
● Branch prediction/reduction
● Exceptions
● Slowpath removal
● Avoiding allocations
● Fast containers
● Lambda functions

21/30

std::vector is the data structure of choice
○ Use it liberally (including as the underlying container for hash tables)
○ Reserve ahead of time, and don’t bother deleting items at runtime

Aim to denormalise data:
○ Avoid doing lookups if the space/time tradeoff is acceptable
○ Consider passing pointers around if you know the collection is stable

Lookups on associative containers can really thrash the cache
○ Consider storing expensive hash values with the key
○ Consider storing only pointers to objects in the container

http://www.reedbeta.com/blog/data-oriented-hash-table

21/30

http://www.reedbeta.com/blog/data-oriented-hash-table/
http://www.reedbeta.com/blog/data-oriented-hash-table/

C++ low latency
coding

techniques

● General considerations
● Compile-time dispatch
● Constexpr
● Variadic templates
● Loop unrolling
● Expression short-circuiting
● Signed vs unsigned comparisons
● Mixing float and doubles
● Branch prediction/reduction
● Exceptions
● Slowpath removal
● Avoiding allocations
● Fast containers
● Lambda functions

22/30

If only at runtime you know what the target is, you have no choice but to use
std::function

If you know at compile time which target is to be run, then prefer lambdas

 template <typename T>

 void SendMessage(T&& target) {

 // populate and send message

 target(mBuffer);

 send(mBuffer);

 }

 SendMessage([&](auto& message) {

 message.field1 = x;

 ...

 message.field3 = z;

});

22/30

Surprises
and side

notes

Older versions of gcc’s implementation had copy on write semantics
● The reference counting mechanism was threadsafe
● You will see atomic reads/writes upon string copying/destruction

gcc 4.9.1
Benchmark Time CPU Iterations

StringOperations 141 ns 141 ns 4902860

gcc 5.4.0
Benchmark Time CPU Iterations

--

StringOperations 84 ns 84 ns 8239460

st
d:

:s
tr

in
g

23/30

● A few more statements in your code and something might no longer be
inlined (and vice versa)
○ Frequently check the disassembly

● Profile guided optimisation (PGO):
○ Can give a speedup, but can also overfit the model

● Static linking tends to help
● Debug symbols have little impact (and are very useful)

○ Debug info just sits in non-cached memory until a core dump occurs
● Consider using Link Time Optimisation (LTO)
● Consider machine-specific compiler flags (-march, -mtune, etc)
● Do experiment with inlining

B
ui

ld
 a

nd
 li

nk

24/30

Userspace networking, such as OpenOnload, allows you to read/write
packets without any system calls

● This is great for sending order messages to exchanges
● But, if too many (potentially irrelevant) packets require reading, this will

trample over your cache (as the default implementation is to handle all
data that you are subscribed for)

I ended up putting userspace onto a different CPU and then pushed key
data into a shared memory queue, which was read on demandU

se
rs

pa
ce

25/30

http://www.openonload.org/

● One process is generally better than two
○ But not if the market data becomes the dominant factor

● Concurrency doesn’t necessarily gain you much
○ Sure you get multiple CPUs, but:

■ Shared caches (above L1)
■ Shared memory bus
■ Shared IO
■ Shared network

● If you use multiple processes, minimize communication between them
● Scale horizontally - split workload across multiple independent servers

○ Don’t think in terms of code, think in terms of problem, then hardware, then code

C
on

cu
rr

en
cy

26/30

So you have a performance issue and
plan on multi-threading?

you Now two problems. have

Accurate measurement

It’s easier to measure and then correct, than to be correct in the first place

I’m nearly always wrong when I try to make educated guesses about how different
factors affect performance

High-resolution packet in/packet out timestamping is the source of truth

27/30

Switch with high precision oscillator and hardware
timestamping (appended to each packet)

Server which
simulates/replays

exchange market data

Server which hosts trading
systems and shoots orders

into a test market

Server which captures and parses each network packet it sees, and calculates packet
in/packet out time (accurate to a few nanoseconds)

27/30

Profiling is useful, but more as a debugger for poor
performance, to complement any packet in/packet

out timing you are doing

Profiling results are often too sensitive to the
specific benchmark

27/30

Downsides
of C++

You do pay for what you don’t use

● Zero sized vectors may have a cost
● std::function allocates
● x86 has a stronger memory model than what

C++11’s memory model provides
○ You see fewer concurrency bugs, but at a performance cost

● Standard containers and allocators are somewhat
non-deterministic in runtime cost

28/30

http://preshing.com/20120930/weak-vs-strong-memory-models/

SG14 I don’t want to have to:

● Perform cache warming by hand
● Perform process control, thread affinity, memory affinity
● Perform performance tricks by hand, and use

compiler-specific options
● Write my own containers, std::functions, strings, etc to avoid

unnecessary allocations
● Write my own IPC (because the standard library doesn’t

provide it)

This is what SG14 aims to take care of

Side note: please see D0419 (LEWG) for my proposal of a
non-allocating std::function (to be presented at WG21 in Kona next
year)

29/30

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0419r0.pdf

stdext::inplace_function
stdext::inplace_function<void(int)> function = [] (int i)
{
 std::cout << i << std::endl;
};
function(42);

stdext::inplace_function<void(int), 32> function = [] (int i)
{
 ClassOf64Bytes c64{i};
 std::cout << c64 << std::endl;
};
// error: static assertion failed: Function too big to fit into buffer

https://github.com/WG21-SG14/SG14/blob/master/SG14/inplace_function.h

30/30

https://github.com/WG21-SG14/SG14/blob/master/SG14/inplace_function.h
https://github.com/WG21-SG14/SG14/blob/master/SG14/inplace_function.h

Summary
● Automated trading systems are about low latency, not throughput

○ Everything by default is (unfortunately) geared towards throughput

● Speed comes from:
○ Problem transformation/simplification/use of heuristics
○ Knowing C++ well, and exploiting it
○ A foundation of fast networks and well tuned servers
○ Measurement, measurement, measurement

● C++ does have some downsides/unexpected costs
● SG14 is fighting the good fight for us

Questions?

carl.cook@gmail.com

SG14
https://groups.google.com/a/isocpp.org/forum/#!forum/sg14

https://github.com/WG21-SG14/SG14

https://groups.google.com/a/isocpp.org/forum/#!forum/sg14
https://groups.google.com/a/isocpp.org/forum/#!forum/sg14
https://github.com/WG21-SG14/SG14
https://github.com/WG21-SG14/SG14

