The Speed Game:
Automated Trading in C++

Carl Cook, Ph.D. optiverA

Contents

How fast is fast

The role of C++ in automated trading systems
Low latency C++ coding techniques
Downsides of C++

SG14

About me

e Ph.D. in software engineering
o Static code analysis/semantic modelling of code

e M.Sc. in computer science
o Programmable/active networks

e 10+ years of commercial software development
o All within the finance industry - focussed on order execution

e Member of SG14 (with proposals to WG21)

o Representing the trading community

e Currently work at Optiver (an electronic market maker)
o | work on order execution, risk systems, performance, ...

Disclaimer

This isn’t a talk about general optimization
For that, please see talks by:

e Andrei Alexandrescu
e Mike Acton

This is a talk about squeezing latency out of your code

I've also removed any overlap from other presentations

Motivating example: Spending money for a weekend in London

EUR-GBP 0.9/1.1

EUR-USD 1.1/0.9 :> USD-GBP 0.82/1.22

1.0*1.1*0.82=0.9
(no arbitrage opportunity)

1.0*1.2*0.82=0.98
Arbitrage opportunity: convert to USD1.2, convert that to GBP0.98, convert that back to EUR1.10

Generally, markets are efficient, where participants will quickly bring prices back into line

1/30

The fastest wins

and it doesn’t matter by how much

2/30

How fast is fast?

From:
Receiving the exchange’s market data,
to spotting the opportunity,
to performing risk checks,
to sending the buy/sell message back to
the exchange

An all software approach: 1-10us
An all hardware approach: 100-1000ns
(Hybrid approaches are also possible)

3/30

How fast is fast?

From:
Receiving the exchange’s market data,
to spotting the opportunity,
to performing risk checks,
to sending the buy/sell message back to
the exchange

. Distance of light in 1us

An all software approach: 1-10us
An all hardware approach: 100-1000ns
(Hybrid approaches are also possible)

3/30

Characteristics of automated trading systems

Only a few lines of code in the entire system are important (buy/sell)
These lines are not exercised often (relative to say graphics rendering)
Lots of market data events (millions of events per second)

Jitter is a killer (delays in reaction time can be very costly)

Very little threading/instruction vectorisation/etc
o Remember - latency not throughput

No mistakes (and very good recovery from mistakes)
o One second is 4 billion CPU instructions

o Companies have gone bankrupt through system error before, and markets/investors have also
been impacted
o A highly regulated and highly visible industry

4/30

The role of C++ in trading systems

5/30

The role of C++ in trading systems

Network

5/30

The role of C++ in trading systems

Network

5/30

The role of C++ in trading systems

Network

5/30

The role of C++ in trading systems

Server hardware

Network

5/30

The role of C++ in trading systems

Server hardware

Network

5/30

The role of C++ in trading systems

Server hardware

Network

5/30

The role of C++int

CPU Host Clock Con
1cy (MHz

v
PCIE Clock(MHz)

PCle Spread Spectrun

HT Link Width
HT Link Frequency
Set Memory Clock
¢ Hemory Clock
DRAM Configuration

[Autol

200
[Autol
[Disabledl
[Autol
[x 81 1688Mhz
[Autol

=53 1866Mhz
[Press Enterl

=xxxxxxx System Uoltage Optimized xxxxxxxx
Systen Voltage Control
CPU PLL Voltage Control
DRAM Voltage control

»x DDR VUTT Voltage Control
NB Voltage Control
NB/PCle/PLL Voltage Cirl
CPU NB VID Control
CPU Voltage Control

CPU Ucore

[Manuall

[2.228V] 2.228V

[1.308V1 1.388V
Norna L 8.808V

[8.988V1 @.98av

[1.688V1 1.688V

[Nornmall

[-8.288V]1 1.1588V

bob@bobs - computer:i~$ cat /etc/sysctl.conf
#

Menu Level >

Uoltage settings
CPU UID

/etc/sysctl.conf - Configuration file for setting system variables
See /etc/sysctl.d/ for additional system variables.
See sysctl.conf (5) for information.

#

#kernel.domainname ample.com

Uncomment the foll

#kernel.printk = 3 4 1

owing to stop low-level messages on console
3

R AR S
[# Functions previously found in netbase

#

Uncomment the next two lines to enable Spoof protection (reverse-path filta
Source Address Verification in all interfaces to

Turn on
prevent
#net.ipvd.
#net.ipvd.

Uncomment the next line to enable TCP/IP SYN cookies
p://lwn.net/Articles/277146/

See htt

some spoofing attacks

conf.default.rp_filter=1

conf.all.rp_filter=1

rading systems

Kernel tuning

Server hardware

Network

5/30

The role of C++ in trading systems

C++

Kernel tuning

Server hardware

Network

5/30

The role of C++ in trading systems

The Black-Scholes Formula

Algos

C++

Kernel tuning

Server hardware

Network

5/30

The role of C++ in trading systems

Kernel tuning

Algos

C++

Server hardware

Network

5/30

The role of C++ in trading systems

Algos

Kernel tuning

Server hardware

Network

5/30

The role of C++ in trading systems

Algos

C++

Kernel tuning

Server hardware

Network

5/30

The role of C++ in trading systems

Algos

C++

Kernel tuning

Server hardware

Network

5/30

The effect of kernel tuning

Calculating Call Option Prices

25 T
Tuned Server
Untuned Server
20 +
- 15 }
(]
[
a
-
o
&
L 10 F
5
0 |} |
100 150 200 2560 300

Time (ns)

Computation: Black-Scholes options pricing (CPU intensive, minimal data access)
6/30

Low latency C++

Smartness

e Problem transformation to faster forms
e Then, move decisions from runtime to compile time
e Sometimes, heuristics are acceptable (price interpolation, some flexibility on limits, etc)

Implementation

e The simpler the code, the faster it is likely to be
e Don’t under-estimate optimising compilers, or try to be the optimising compiler
e Know the language, and become very familiar with the STL (algorithm selection)
e Know your hardware!
e Bypass the kernel - aim for 100% userspace code (C/C++), including any network 10
e Measure, measure, measure
Specifics

e Read the resultant assembly
e Cache warming helps (instruction and data cache misses are a large cost)

7/30

Remember: bypass the operating system!

File Edit View Terminal Tabs Help

0685 X | doall

7/30

C++ |low latency
coding
techniques

General considerations
Compile-time dispatch
Constexpr

Variadic templates

Loop unrolling

Expression short-circuiting
Signed vs unsigned comparisons
Mixing float and doubles
Branch prediction/reduction
Exceptions

Slowpath removal

Avoiding allocations

Fast containers

Lambda functions

C++ |low latency
coding
techniques

General considerations
Compile-time dispatch
Constexpr

Variadic templates

Loop unrolling

Expression short-circuiting
Signed vs unsigned comparisons
Mixing float and doubles
Branch prediction/reduction
Exceptions

Slowpath removal

Avoiding allocations

Fast containers

Lambda functions

Without repeating examples from other MeetingCpp talks this year:

Move semantics

Static assert

Data member layout, padding and alignment
False sharing

Cache locality

9/30

C++ |low latency
coding
techniques

General considerations
Compile-time dispatch
Constexpr

Variadic templates

Loop unrolling

Expression short-circuiting
Signed vs unsigned comparisons
Mixing float and doubles
Branch prediction/reduction
Exceptions

Slowpath removal

Avoiding allocations

Fast containers

Lambda functions

An old C vs C++ example, but very significant on modern hardware

constexpr N = 10000;
int array[N];

std::sort(array, array + N, [](int a, int b) { return b < a; });
71us, std deviation 1.5us

int comparer(const void* a, const void* b) { return *(int*)a - *(int*)b; }
gsort(arr, N, sizeof(int), comparer);

223us, std deviation 7us

10/30

genchmarks
abs Help

® | Terminal

By the way, google-benchmark is great

10/30

https://opensource.googleblog.com/2014/01/introducing-benchmark.html

genchmarks
abs Help

® | Terminal

By the way, google-benchmark is great

More about measurement later on...

10/30

https://opensource.googleblog.com/2014/01/introducing-benchmark.html

C++ |low latency
coding
techniques

General considerations
Compile-time dispatch
Constexpr

Variadic templates

Loop unrolling

Expression short-circuiting
Signed vs unsigned comparisons
Mixing float and doubles
Branch prediction/reduction
Exceptions

Slowpath removal

Avoiding allocations

Fast containers

Lambda functions

Another case of trying to do as much at compile time as possible
e Yields faster compile times than templates

C++source #1 [m} #1 with x86-64 gcc 6.2 =
AlAAlIR & |2 X86-64 gec 6.2 v | _of
1 #include <type_traits>» - — - S
11010 A
template<typename Base, typename Exp> main
constexpr Base pow(Base base, Exp exp) { mowv eax, 65535
static_assert(std::is_integral<Exp>::value, "pow requires an integer exponent”); et

static_assert(std::is_unsigned<Exp>::value, "pow requires an unsigned exponent™);

Base result = 1;

for (unsigned i = @; 1 < exp; ++i)
result *= base;

return result;

4| int main() {
return pow(4, 8u);

5 (3

11/30

Another case of trying to do as much at compile time as possible
e Yields faster compile times than templates

C++source #1 [m} #1 with x86-64 gcc 6.2 =
AlAAlIR & |2 X86-64 gec 6.2 v | _of
1 #include <type_traits> —_ =
A 11010 { ; A
template<typename Base, typename Exp> 1 main:
constexpr Base pow(Base base, Exp exp) { maw eax, 65536
static_assert(std::is_integral<Exp>::value, "pow requires an integer exponent™); ret
static_assert(std::is unsigned<Exp>::value, "pow regquires an unsigned exponent");
Base result = 1;
for (unsigned i = @; 1 < exp; ++i)
result *= base;
return result;
2}
S svane Poor implementation,
return pow(4, 8u); but doeS |t matter?
5 (13
I

11/30

C++ |low latency
coding
techniques

General considerations
Compile-time dispatch
Constexpr

Variadic templates

Loop unrolling

Expression short-circuiting
Signed vs unsigned comparisons
Mixing float and doubles
Branch prediction/reduction
Exceptions

Slowpath removal

Avoiding allocations

Fast containers

Lambda functions

Motivating example: fast, typesafe and simple logging:

int main(int argc, char* args[]) {
LOG("Hello myInt=% myChar=% myDouble=%", 1, ‘a’, 42.3);

}

$./logger
$ myInt=1 myChar=a myDouble=42.3

Disassembly (of hotpath):

movl $1, writeBuffer(%rip)
movb $97, writeBuffer+4(%rip)
movq %rax, writeBuffer+5(%rip)

12/30

The general idea:

e Do argument checking at compile time
e Also at compile time, define types that know how to:

o Serialise the argument data

o Deserialise/format the arguments given the serialised data

e In the hotpath, just serialise the data

LOG("Hello myInt=% myChar=% myDouble=%", 1, ‘a’, 42.3);

1 0 0 0 97

102

102

102

102

102

38

69

64

42.

3

12/30

// API
#define LOG(formatString, ...) \

static_assert(CountPlaceholders(formatString) == sizeof_args(_ VA ARGS_), \

"Number of arguments mismatch"); \
WriteLog(formatString, ## VA ARGS_);

// Useful helper functions
constexpr size_ t CountPlaceholders(const char* formatString) {
size t result {0};

while (formatString[@] != "\0') {
result += (formatString[@] == '%') ? 1u : Ou;
formatString++;

}

return result;

}

template <typename... Types>
constexpr unsigned sizeof_args(Types&&...) {
return sizeof...(Types);

}

12/30

template <typename... Args>

static void WriteLog(const char* formatString, const Args&... args) {
// calculate space needed in buffer, then get the buffer, then store the format
// string, and pointer to static object that knows how to format these arguments
char* argsBuffer = /* minor details */

// copy args in the buffer
CopyArgs(argsBuffer, args...);

¥

// write a single arg to the buffer and continue with the tail
template<typename Arg, typename ... Args>
static char* CopyArgs(char* argsData, const Arg& arg, const Args&... args) {
argsData = CopyArg(argsData, arg);
return CopyArgs(argsData, args...);

}

// base case (terminator)
inline char* CopyArgs(char* argsData) { return argsData; }

12/30

// specialisation of CopyArg for trivially copyable types
template <typename T>

static char* CopyArg(char* argsData, T arg) {

static_assert(std::is_trivially copyable<T>::value, "trivially-copyable types only");
reinterpret_cast<T>(argsData) = arg;
return argsData + sizeof(arg);

}

Key point: all of this code gets inlined into simple mov statements, with non-trivial
types only slightly more expensive

Have a look at the following repositories for working examples:
e https://github.com/maciekgajewski/Fast-Log
e https://qgithub.com/carlcook/variadiclLogging

12/30

https://github.com/maciekgajewski/Fast-Log
https://github.com/maciekgajewski/Fast-Log
https://github.com/carlcook/variadicLogging
https://github.com/carlcook/variadicLogging

C++ |low latency
coding
techniques

General considerations
Compile-time dispatch
Constexpr

Variadic templates

Loop unrolling
Expression short-circuiting
Signed vs unsigned comparisons
Mixing float and doubles
Branch prediction/reduction
Exceptions

Slowpath removal

Avoiding allocations

Fast containers

Lambda functions

Generally, don’t bother, the compiler will figure it out
e In fact, some compilers ask you to not manually unroll

C++source #1 O #1 with x86-64 clang 390
AAARR | B |2 x86-64 clang 3.9.0 - _std=c++14 -O1
| int mainiin char® 3 - — SR
ir in:az;igtt=a;?c, char® argv[]) { Al . : WENE 2
for (int 1 =@; 1 < 26; ++i) | main: # (Imain
if (argc < 18) mow eax, edi
count += argc; 3 neg cax
else] cmp edi, 1@
count -= argc; cmowl eax, edil
return count; : imul eax, eax, 26

ret

13/30

https://software.intel.com/en-us/articles/avoid-manual-loop-unrolling

C++ |low latency
coding
techniques

General considerations
Compile-time dispatch
Constexpr

Variadic templates

Loop unrolling

Expression short-circuiting
Signed vs unsigned comparisons
Mixing float and doubles
Branch prediction/reduction
Exceptions

Slowpath removal

Avoiding allocations

Fast containers

Lambda functions

Try to short circuit wherever possible

e Rewrite:
if (expensiveCheck() && inexpensiveCheck()) {}

e As:
if (inexpensiveCheck() && expensiveCheck()) {}

| know | just said not to try to beat the optimizer... but compilers can’t reorder
statements where they are not sure of what the side effects are of doing so

14/30

C++ |low latency
coding
techniques

General considerations
Compile-time dispatch
Constexpr

Variadic templates

Loop unrolling

Expression short-circuiting
Signed vs unsigned comparisons
Mixing float and doubles
Branch prediction/reduction
Exceptions

Slowpath removal

Avoiding allocations

Fast containers

Lambda functions

Key points:

1. There is no such thing as overflow for signed integers in C++
o Writing a program that overflows is Undefined Behaviour

2. Unsigned integers in C++ must wrap (which can have a cost)
o l.e.itis not Undefined Behaviour

15/30

Compiler Explorer - C++

C++ spurce #1 O #1 with x86-64 gcc 6.2
AlAlAJRB | e | & x86-64 gce 6.2 > -02
#include <cstdlib>
11010 AlAA|C

int f{int i) { f{int):

int j = @; mon eax, 1@

for (signed k = i; k < 1 + 18; ++k) 3 ret

++33; main:

return j; sub rsp, 8

T call rand
mov eax, 1@

int main() { add rsp, 8

int i = rand(); ret

return F(1i);

}

Credit for example: http://www.airs.com/blog/archives/120

15/30

Compiler Explorer - C++

C++ source #1 O #1 with x86-64 gecc 6.2 x
AlAAR | B | & X86-64 gcc 6.2 * Il o2

#include <cstdlib>

int f{int i) { f(int):
int j = @; lea eax, [rdi+le]
for (unsigned k = 1i; k ¢ 1 + 18; ++k) : cmo edi, eax
+3; £:iz> shb eax, eax
return j; and eax, 10
} i ret
main:
int main{) { sub rsp, B
int i = rand(); call rand
return f{1); lea edx, [rax+le]
} emp eax, edx
shb £ax, Sax
add rsp, 8
and eax, 18
ret
——

15/30

Compiler Explorer - C++

C++ cource #1 O #1 with x86-64 gocc 6.2 x
AlAlAJRB B | & X86-64 gcc 6.2 v | 02

#include <cstdlib>

int f(int i) { f(int):
int jo=8; lea eax, [rdit+lé]
for (unsigned k = 1i; k < i + 1@; ++k) : cmp edi, eax
++3; shb eax, eax
return j; and eax, 1@
} f ret
main:
int main{) { sub rsp, 8
int i = rand(); call rand
return f{1i); lea edx, [rax+1@]
} emp eax, edx
[::::> sbb £ax, Eax
add rsp, 8
and eax, 18
ret
—

15/30

C++ |low latency
coding
techniques

General considerations
Compile-time dispatch
Constexpr

Variadic templates

Loop unrolling

Expression short-circuiting
Signed vs unsigned comparisons
Mixing float and doubles
Branch prediction/reduction
Exceptions

Slowpath removal

Avoiding allocations

Fast containers

Lambda functions

Mixing floats and double can have a minor runtime cost:

e http://www.agner.org/optimize/optimizing cpp.pdf

int main() {
float a, b = rand();
a=>b*1.23;
return a;

}

16/30

http://www.agner.org/optimize/optimizing_cpp.pdf
http://www.agner.org/optimize/optimizing_cpp.pdf

Mixing floats and double can have a minor runtime cost

e hitp://www.agner.org/optimize/optimizing cpp.pdf

int main() {
float a, b = rand();

a=b*1.23; {mm

return a;

}

Default type of a floating point literal in C++ is double, not float
e \Watch out for conversions
e Side note: If you are brave, consider -ffast-math

16/30

http://www.agner.org/optimize/optimizing_cpp.pdf
http://www.agner.org/optimize/optimizing_cpp.pdf

C++ |low latency
coding
techniques

General considerations
Compile-time dispatch
Constexpr

Variadic templates

Loop unrolling

Expression short-circuiting
Signed vs unsigned comparisons
Mixing float and doubles
Branch prediction/reduction
Exceptions

Slowpath removal

Avoiding allocations

Fast containers

Lambda functions

Compile-time branch prediction hints are a topic of much discussion
(particularly within SG14)
o l.e.gcc’'s _ builtin_expect
Remember, the hardware branch predictor is extremely good
o This will (should) dominate any compiler reordering of branches
Some exceptions to the rule:
o A function that isn’t called often, but when it is, it needs to be fast
o Data/code layout might be better with compiler hints
Branch prediction hints are definitely a quick win
o But returns may diminish as you start to manually tune your code

17/30

Avoid this: Aim for this:

if (checkForErrorA()) uint32_t errorFlags;
handleErrorA(); e
else if (checkForErrorB()) if (errorFlags)
handleErrorB(); HandleError(errorFlags)
else if (checkForErrorC()) else
handleErrorC(); { . hotpath
else }
executeHotpath();

e |.e. handle/prepare for errors when they happen, not in the hotpath
e Also consider tearing down entire control path upon error
o This means the control path does less error checking itself

17/30

C++ |low latency
coding
techniques

General considerations
Compile-time dispatch
Constexpr

Variadic templates

Loop unrolling

Expression short-circuiting
Signed vs unsigned comparisons
Mixing float and doubles
Branch prediction/reduction
Exceptions

Slowpath removal

Avoiding allocations

Fast containers

Lambda functions

Trying is cheap, catching is expensive*
*assuming a table-driven approach, as supported by llvm/gcc

e Unthrown exceptions don’t appear to have a measurable cost

o Disclaimer: for server applications (not necessarily other domains)
e For the non-exceptional flow, it's just evaluating a conditional jump

e The branch predictor is going guess correctly
e |'ve timed this with multiple autotrading applications compiled with

exception handling disabled

o No speedup (in fact, quite a fast form of error handling)

e Admittedly, it's hard to measure this, as there is an Observer Effect
m By disabling exceptions you are altering the codepath

18/30

http://www.open-std.org/jtc1/sc22/wg21/docs/TR18015.pdf

C++ |low latency
coding
techniques

General considerations
Compile-time dispatch
Constexpr

Variadic templates

Loop unrolling

Expression short-circuiting
Signed vs unsigned comparisons
Mixing float and doubles
Branch prediction/reduction
Exceptions

Slowpath removal
Avoiding allocations

Fast containers

Lambda functions

Code is data - keep it minimal, and keep the slowpath code away from the hotpath

if (okay) { if (okay) {
hotpath hotpath

} : }

else { else {
sendToClient(“Order failed”); HandleError();
removeFromMap (orderId); }

logMessage(“Order failed”);

19/30

e Keep functions that are used together close to each other
e Keep data that are used together close to each other

e Don't declare slowpath functions as inline. In fact, consider using:
void _ attribute ((noinline)) myUnimportantFunction()

{

}

19/30

C++ |low latency
coding
techniques

General considerations
Compile-time dispatch
Constexpr

Variadic templates

Loop unrolling

Expression short-circuiting
Signed vs unsigned comparisons
Mixing float and doubles
Branch prediction/reduction
Exceptions

Slowpath removal
Avoiding allocations

Fast containers

Lambda functions

new and delete have an associated cost
e That cost is variable, but can be several microseconds
o It can involve a system call (and page faults and TLB misses)
e Multithreaded applications also incur overhead in terms of allocations

Allocate ahead of time, hold onto memory forever (placement new)
e This also helps keeps related data together

e This also helps avoid long term fragmentation

Tip: don’t use swap. Memory is cheap. Buy more!

20/30

C++ |low latency
coding
techniques

General considerations
Compile-time dispatch
Constexpr

Variadic templates

Loop unrolling

Expression short-circuiting
Signed vs unsigned comparisons
Mixing float and doubles
Branch prediction/reduction
Exceptions

Slowpath removal

Avoiding allocations

Fast containers

Lambda functions

std: :vector is the data structure of choice

o Use it liberally (including as the underlying container for hash tables)
o Reserve ahead of time, and don’t bother deleting items at runtime

Aim to denormalise data:
o Avoid doing lookups if the space/time tradeoff is acceptable
o Consider passing pointers around if you know the collection is stable

Lookups on associative containers can really thrash the cache
o Consider storing expensive hash values with the key
o Consider storing only pointers to objects in the container

http://www.reedbeta.com/blog/data-oriented-hash-table

21/30

http://www.reedbeta.com/blog/data-oriented-hash-table/
http://www.reedbeta.com/blog/data-oriented-hash-table/

C++ |low latency
coding
techniques

General considerations
Compile-time dispatch
Constexpr

Variadic templates

Loop unrolling

Expression short-circuiting
Signed vs unsigned comparisons
Mixing float and doubles
Branch prediction/reduction
Exceptions

Slowpath removal

Avoiding allocations

Fast containers

Lambda functions

If only at runtime you know what the target is, you have no choice but to use
std: :function

If you know at compile time which target is to be run, then prefer lambdas

template <typename T> SendMessage([&] (auto& message) {
void SendMessage(T&& target) { message.fieldl = x;
// populate and send message ces
target (mBuffer); message.field3 = z;
send(mBuffer); 1)
}

22/30

Surprises

and side
hotes

string

std

Older versions of gcc’s implementation had copy on write semantics
e The reference counting mechanism was threadsafe
e You will see atomic reads/writes upon string copying/destruction

gcc 4.9.1
Benchmark

CPU Iterations

StringOperations

gcc 5.4.0
Benchmark

141 ns 4902860

CPU Iterations

StringOperations

84 ns 8239460

23/30

Build and link

A few more statements in your code and something might no longer be
inlined (and vice versa)
o Frequently check the disassembly
Profile guided optimisation (PGO):
o Can give a speedup, but can also overfit the model
Static linking tends to help
Debug symbols have little impact (and are very useful)
o Debug info just sits in non-cached memory until a core dump occurs
Consider using Link Time Optimisation (LTO)
Consider machine-specific compiler flags (-march, -mtune, etc)
Do experiment with inlining

24/30

Userspace

Userspace networking, such as OpenOnload, allows you to read/write
packets without any system calls

e This is great for sending order messages to exchanges

e But, if too many (potentially irrelevant) packets require reading, this will
trample over your cache (as the default implementation is to handle all
data that you are subscribed for)

| ended up putting userspace onto a different CPU and then pushed key
data into a shared memory queue, which was read on demand

25/30

http://www.openonload.org/

Concurrency

One process is generally better than two
o But not if the market data becomes the dominant factor
Concurrency doesn’t necessarily gain you much

o Sure you get multiple CPUs, but:
m Shared caches (above L1)
m Shared memory bus
m Shared IO
m Shared network

If you use multiple processes, minimize communication between them

Scale horizontally - split workload across multiple independent servers
o Don't think in terms of code, think in terms of problem, then hardware, then code

26/30

So you have a performance issue and
plan on multi-threading?

you Now two problems. have

Accurate measurement

It’s easier to measure and then correct, than to be correct in the first place

I’'m nearly always wrong when | try to make educated guesses about how different
factors affect performance

High-resolution packet in/packet out timestamping is the source of truth

27/30

Switch with high precision oscillator and hardware
timestamping (appended to each packet)

T

Server which Server which hosts trading
simulates/replays systems and shoots orders
exchange market data into a test market

Server which captures and parses each network packet it sees, and calculates packet
in/packet out time (accurate to a few nanoseconds)

27/30

Profiling is useful, but more as a debugger for poor
o performance, to complement any packet in/packet
e out timing you are doing

Profiling results are often too sensitive to the
specific benchmark

27/30

1 gprof.utf—s,unix,en,,gprufFunctinnindex

Downsides You do pay for what you don’t use

Of C++ e Zero sized vectors may have a cost
e std::function allocates
e Xx86 has a stronger memory model than what

C++11's memory model provides
o You see fewer concurrency bugs, but at a performance cost
e Standard containers and allocators are somewhat

non-deterministic in runtime cost

28/30

http://preshing.com/20120930/weak-vs-strong-memory-models/

| don’t want to have to:

e Perform cache warming by hand

e Perform process control, thread affinity, memory affinity

e Perform performance tricks by hand, and use
compiler-specific options

e \Write my own containers, std::functions, strings, etc to avoid
unnecessary allocations

e Write my own IPC (because the standard library doesn’t
provide it)

This is what SG14 aims to take care of

Side note: please see D0419 (LEWG) for my proposal of a
non-allocating std::function (to be presented at WG21 in Kona next
year)

29/30

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0419r0.pdf

stdext::inplace_function

stdext::inplace_function<void(int)> function = [] (int i)

{

}s
function(42);

std::cout << 1 << std::endl;

stdext::inplace_function<void(int), 32> function = [] (int i)

{
ClassOf64Bytes c64{i};

std::cout << c64 << std::endl;
}s

// error: static assertion failed: Function too big to fit into buffer

https://qithub.com/\WG21-SG14/SG14/blob/master/SG14/inplace function.h

30/30

https://github.com/WG21-SG14/SG14/blob/master/SG14/inplace_function.h
https://github.com/WG21-SG14/SG14/blob/master/SG14/inplace_function.h

Summary

Automated trading systems are about low latency, not throughput
o Everything by default is (unfortunately) geared towards throughput
Speed comes from:
o Problem transformation/simplification/use of heuristics
o Knowing C++ well, and exploiting it
o A foundation of fast networks and well tuned servers
o Measurement, measurement, measurement

C++ does have some downsides/unexpected costs
SG14 is fighting the good fight for us

Questions?

carl.cook@gmail.com

SG14
https://aroups.qgoogle.com/a/isocpp.org/forum/#!forum/sqg14
https://qithub.com/WG21-SG14/SG14

https://groups.google.com/a/isocpp.org/forum/#!forum/sg14
https://groups.google.com/a/isocpp.org/forum/#!forum/sg14
https://github.com/WG21-SG14/SG14
https://github.com/WG21-SG14/SG14

